首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slow pyrolysis experiments of China fir (Cunninghamia lanceolata) wood were performed in a vertical tubular furnace at various heating rates. The raw material was pretreated by impregnation with phosphoric acid solutions of various concentrations for given times. The evolution of the gaseous products CO, CO2, H2 and CH4 was analyzed online by using gas spectrometry to investigate the effect of phosphoric acid on the pyrolytic gaseous products of biomass. The addition of phosphoric acid was shown to significantly reduce the pyrolysis temperature necessary for the production of CO, CO2 and H2 gases, and the pyrolysis variables exerted an influence on the amount of the gases released. Moreover, phosphoric acid appreciably depressed the CO, CO2 and CH4 production, and promoted H2, especially when a higher heating rate was employed. This suggested that phosphoric acid catalyzed both the primary thermal decomposition of biopolymers and the secondary reactions that took place among the pyrolytic vapor products.  相似文献   

2.

Synergistic effect of co-pyrolysis of macroalgae [Enteromorpha prolifera (EP)] and lignocellulosic biomass [rice husk (RH)] in a fixed bed reactor for maximum and enhanced biofuels yield has been investigated. The main and interaction effects of three effective co-pyrolysis parameters (pyrolysis temperature, feedstock blending ratio, and heating rate) were also modeled and simulated to determine the yield rates of bio-oil and bio-char, respectively. Optimization studies were, then, performed to predict the optimal conditions for maximum yields using the central composite circumscribed experimental design in Design Expert® software 8.0.6. Analysis of variance was carried out to determine whether the fit of the multiple regressions is significant for the second-order model. Normal pyrolysis oils from EP, RH, and co-pyrolysis oils obtained from different feedstock blending ratios were examined using the gas chromatography-mass spectrometry to identify their compositions. Some vital properties of oils and bio-chars such as the heating value, water content, elemental compositions, and specific gravity were also determined, which unveiled that synergistic effect exists between EP and RH during co-pyrolysis, and this led to increase in products’ yields and improved co-pyrolysis products’ quality.

  相似文献   

3.
Achieving the EU 2030 vision of a 15% minimum amount of biofuels utilized in the road transportation require more research on biofuel production from biomass feedstock. To this end, this review study examines the use of green, deep eutectic solvents and direct transesterification approaches for biomass conversion to biofuels. Next, biogas production from anaerobic co-digestion of microalgae biomass is presented. Lastly, the effect of operating conditions, as well as advantages and limitations of several biomass conversion techniques are outlined. Of note, this study presents promising microalgae conversion processes which could be progressed are the use of bio-based solvents and supercritical fluids for biodiesel production, hydrothermal liquefaction for biogas production, microwave-induced pyrolysis for syngas production, and ultrasound/microwave enhanced extraction for bio-oil production. These are based on the possibility of high yield and process economics. We have also enumerated knowledge gaps needed to propel future studies.  相似文献   

4.

The use of agricultural wastes for energy conversion has been widely studied as renewable and carbon neutral energy sources. This paper aims to evaluate the energetic potential of six agricultural wastes—sugarcane bagasse, bean pods, corn stover, pineapple crown leaves, white cotton and natural coloured cotton stalks, through their characterization and pyrolysis kinetic study. The energetic potential of biomasses was evaluated by ultimate and proximate analysis, higher heating value (HHV), apparent density, and kinetic parameters of conversion and apparent activation energy (Ea) determined by Model-Free kinetics though thermogravimetric analysis data. The results indicate energetic density for dry basis biomasses, such as moisture content less than 7%, volatiles higher than 77% and moderate ash content. The HHVs were higher for the biomass with low O:C ratio. The Ea values increased with increasing O:C ratio and were also influenced by the biomass ash content. Among the studied biomasses, PCL are less explored for energy application, although the results confirm its potential for application in thermochemical processes such as pyrolysis or combustion.

  相似文献   

5.
Activated carbon production from almond shells using phosphoric acid activation agent was achieved by applying both conventional heating and microwave heating in succession. The morphology and surface properties of activated carbon were studied using thermogravimetric and differential gravimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis. A surface area of 1128 m2/g was achieved by optimizing the microwave power (500?W), microwave application time (15?minutes), conventional heating time (45?minutes), conventional heating temperature (500?°C), and the phosphoric acid:sample ratio (0.7:1). An adsorption capacity of methylene blue of 148?mg/g and an iodine value of 791?mg/g was obtained for the prepared activated carbon.  相似文献   

6.
A series of biomass wastes (sewage sludges, coffee hulls and glycerol) were subjected to pyrolysis experiments under conventional and microwave heating. The influence of the initial characteristics of the raw materials upon syngas production was studied. Glycerol yielded the highest concentration of syngas, but the lowest H2/CO ratio, whereas sewage sludges produced the lowest syngas production with the highest H2/CO molar ratio. Coffee hull displayed intermediate values for both parameters. Microwave heating produced greater gas yields with elevated syngas content than conventional pyrolysis. Moreover, microwave pyrolysis always achieved the desired effect with temperature increase upon the pyrolysis products, whatever biomass material was employed. This could be due to the hot spot phenomenon, which only occurs under microwave heating. In addition, a comparison of the energy consumption of the traditional and microwave-assisted pyrolysis is also presented. Results point at microwave system as less time and energy consuming in comparison to conventional system.  相似文献   

7.
A rapid analytical technique has been developed to qualitatively screen and quantitatively analyze biomass feedstocks for conversion into hydrocarbon fuels and chemicals. In this rapid analytical pyrolysis approach, herbaceous biomass feedstocks stored in the open without cover for 6 to 9 months were characterized using the molecular-beam mass spectrometer (MBMS). The biomass materials were pyrolyzed at 600°C and the volatile pyrolysis products were analyzed in real time by the MBMS. The mass spectral data were further analyzed by multivariate statistical techniques (Factor Analysis). The contents of nitrogen compounds, pentosans and hexosans estimated from the pyrolysis mass-spectrometric/multivariate analysis techniques correlated well with the results obtained by conventional wet chemical methods. However, lignin correlation was very weak because of the presence of microbial degradation products of biomass (humic material) that interfered with the Klason lignin analysis.

This rapid analytical technique was used to analyze various fractions of the stored biomass feedstocks. A comparison of exposed surface biomass materials and the unexposed materials showed that the exposed fraction lost 30% (wt) of the carbohydrate component of the biomass relative to the fresh material.  相似文献   


8.
A rapid method for the analysis of biomass feedstocks was established to identify the quality of the pyrolysis products likely to impact on bio-oil production. A total of 15 Lolium and Festuca grasses known to exhibit a range of Klason lignin contents were analysed by pyroprobe–GC/MS (Py–GC/MS) to determine the composition of the thermal degradation products of lignin. The identification of key marker compounds which are the derivatives of the three major lignin subunits (G, H, and S) allowed pyroprobe-GC/MS to be statistically correlated to the Klason lignin content of the biomass using the partial least-square method to produce a calibration model. Data from this multivariate modelling procedure was then applied to identify likely “key marker” ions representative of the lignin subunits from the mass spectral data. The combined total abundance of the identified key markers for the lignin subunits exhibited a linear relationship with the Klason lignin content. In addition the effect of alkali metal concentration on optimum pyrolysis characteristics was also examined. Washing of the grass samples removed approximately 70% of the metals and changed the characteristics of the thermal degradation process and products. Overall the data indicate that both the organic and inorganic specification of the biofuel impacts on the pyrolysis process and that pyroprobe–GC/MS is a suitable analytical technique to asses lignin composition.  相似文献   

9.

In this paper, it was suggested the use of green corn husk, which is a biomass from agro-industry, as an alternative source of energy through its pyrolysis. Green corn husk characterization was done through immediate and elemental analysis of its components: cellulose, hemicelluloses, and lignin. It was also measured its higher calorific value. The pyrolysis study of green corn husk was done by the isoconversion and the Master plots method. Thermogravimetric plots were obtained at heating rates of 5, 10, 15, and 20 °C min?1. The pyrolysis kinetics parameters were studied through the Flynn–Wall–Ozawa (FWO), Kissinger, and Friedman models. The Master plots method was used to determine the pyrolysis reaction order. The results of the reaction energy activation were found to be in the range 105.21–157.46 kJ mol?1 by the FWO method, 150.50 kJ mol?1 by the Kissinger method, and ranged 120.66–163.81 kJ mol?1 by the Friedman method. The Master plots method showed a three-way-transport diffusional kinetics for the biomass de-volatilization process. The higher calorific value found for green corn husk was 16.14 MJ kg?1. The simulation showed correlation between the experimental data and the proposed model for conversion values up to 0.8.

  相似文献   

10.
The pretreatment of biomass prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass feed stocks leading to a change in the mechanism of biomass thermal decomposition. Pretreatment of feed stocks prior to fast pyrolysis provides an opportunity to produce bio-oils with varied chemical composition and physical properties. This provides the potential to vary bio-oil chemical and physical properties for specific applications. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we applied six chemical pretreatments: dilute phosphoric acid, dilute sulfuric acid, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and hydrogen peroxide. Bio-oils were produced from untreated and pretreated 10-year old pine wood feed stocks in an auger reactor at 450 °C. The bio-oils’ physical properties of pH, water content, acid value, density, viscosity, and heating value were measured. Mean molecular weights and polydispersity were determined by gel permeation chromatography. Chemical characteristics of the bio-oils were determined by gas chromatography–mass spectrometry and Fourier transform infrared techniques. Results showed that the physical and chemical characteristics of the bio-oils produced from pretreated pine wood feed stocks were influenced by the biomass pretreatments applied. These physical and chemical changes are compared and discussed in detail in the paper.  相似文献   

11.
Nonisothermal nth-order distributed activation energy model (DAEM) was derived. Numerical solutions of the nonisothermal nth-order DAEM equation were performed. The influences of various parameters relevant to biomass pyrolysis on numerical results of the nonisothermal nth-order DAEM equation were also studied. Investigated parameters are heating rate, the mean of activation energy distribution, standard deviation of activation energy distribution, frequency factor and reaction order. The study results can be further responsible for determination of nth-order DAEM kinetic parameters from thermogravimetric analysis data of biomass.  相似文献   

12.
The present work is devoted to the estimation of the effect of phosphoric acid and Fe3+ ions on the 1,6-anhydrosaccharides levoglucosan (LG) and levoglucosenone (LGone) contents in volatile products obtained from wood and microcrystalline cellulose by analytical pyrolysis. It was shown that the LG and LGone contents can be influenced by the pre-treatment. Iron was introduced into the biomass either by soaking in iron(III) sulfate solution alone or in the presence of ammonium, a treatment, in the course of which iron oxihydroxide is formed. It was demonstrated that a previous decationization of wood plays an important role for the subsequent results of Fe3+ ion treatment.The 1,6-anhydrosaccharides content in volatile products and the ratio of LG/LGone is governed by the phosphoric acid concentration. The same is true for cellulose soaked by iron sulfate: at higher concentration, the LGone content increases and the LG/LGone ratio decreases. The mechanism of the action of iron ions depends on the iron species formed upon the cellulose-containing raw materials pre-treatment procedures with iron sulfate. Upon pyrolysis, the adsorbed iron sulfate increases the amount of both LG and LGone in volatile products through the acidic catalysis mechanism owing to sulfate anions activity. The pre-treatment by the ion-exchange method could be considered as an efficient technique for obtaining the biooil containing levoglucosan in high content: 44.8% from cellulose and 27.3% from wood. The results are interpreted based on the quantitative evaluation of the pyrograms and the ESR spectra of the treated wood.  相似文献   

13.
This paper describes the influences of some parameters relevant to biomass pyrolysis on the numerical solutions of the nonisothermal n th-order distributed activation energy model (DAEM) involved the Weibull distribution. Investigated parameters are the integral upper limit, the frequency factor, heating rate, the reaction order and the shape, scale and location parameters of the Weibull distribution. Those influences can be used for the determination of the kinetic parameters of the nonisothermal n th-order Weibull DAEM from thermoanalytical data of biomass pyrolysis.  相似文献   

14.
《Analytical letters》2012,45(8):775-780
Abstract

A spectrophotometric method for the determination of milligram amounts of trivalent manganese in the presence of divalent iron, trivalent iron, and divalent manganese is described. Powdered samples are dissolved by heating in concentrated phosphoric acid in the presence of iodic acid. Trivalent manganese in phosphoric acid is determined spectrophotornetrically following the removal of iodine.  相似文献   

15.
酸洗预处理对纤维素热裂解的影响研究   总被引:5,自引:0,他引:5  
为获得液体产量的最大化和提高产物中糖类的质量分数,采用盐酸(3%、5%、7%)、磷酸(7%)和硫酸(7%)对纤维素进行酸洗预处理。不同酸洗预处理下纤维素的微观结构和聚合度变化表明,酸处理损坏了纤维素的物理结构,并使聚合度大幅度降低。在“┣”形石英玻璃反应器的快速热裂解试验装置上进行了不同酸处理前后的纤维素热裂解试验,发现酸浸泡处理后,生物油产率下降,相应的气体和焦炭产率提高,并且随着酸浓度的提高,该趋势逐渐增强。与盐酸和磷酸相比,硫酸对生物油的生成具有更强的抑制作用,这表明,酸对纤维素交联和脱水反应的催化效果。通过GC-MS色质联机分析技术对生物油成分进行分析,发现酸的存在并没有改变生物油成分的种类,但使化合物之间的相对质量分数发生了变化。左旋葡聚糖的质量分数随稀酸溶液浓度的增加呈下降趋势,原因是残留在物料中的微量酸以催化脱水和交联反应的方式,对其生成起抑制作用。  相似文献   

16.
In order to produce CO2 for stable isotope analyses (δ18O and δ13C), carbonate samples are commonly digested in phosphoric acid. The acid recipe here presented is based on phase shifting crystalline orthophosphoric acid of pro‐analysis quality to a liquid state through heating, followed by pre‐vacuum treatment during a start‐up procedure before mass analyses for common acid bath preparation, or adding a small amount of phosphoric pentoxide for single drop equipments, respectively. This methodology results in a final acid concentration of 104%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
升温速率对生物质热解的影响   总被引:4,自引:0,他引:4  
稻壳、稻秆及麦秆是中国主要的农业废弃物,如何综合、有效地利用这些农业废弃物进行资源化研究显得十分必要。热解是热化学转化中最为基本的过程,是气化、液化及燃烧过程的初始和伴生反应,对热解的分析有助于热化学转化过程控制及高效转化工艺的开发。目前,国内外对生物质及其组分的热解已有大量的研究,但对中国主要的农业废弃物稻壳、稻秆及麦秆的研究较少。本研究利用热重和红外联用技术深入研究了升温速率对三种典型生物质热解气体产物的影响,并对生物质的热解动力学及热解气体产物的析出规律进行实时在线分析。  相似文献   

18.
以离子液体1-丁基-3-甲基咪唑氯([Bmim]Cl)和1-丁基-3甲基咪唑四氟化硼([Bmim]BF4)为催化剂,在微波加热作用下,研究了稻草和锯屑的热解。微波加热20 min,稻草和锯屑的生物油产率分别为38%和34%。考察了微波加热时间、微波功率和离子液体用量对生物质油产率的影响。当以相同的离子液体为催化剂时,稻草微波热解得到的生物质油产率大于锯屑的。生物油成分主要有糠醛、醋酸和1-羟基-2-丁酮等,其含量主要取决于生物质原料和加入的离子液体的类型。  相似文献   

19.
Use of crude oil derivatives such as diesel and gasoline is becoming unsuitable due to their detriment to environment and to the increasing worldwide energy demand which is driving crude oil reservoirs towards exhaustion. Replacement of diesel and gasoline with biofuels (i.e. biodiesel and bioethanol, respectively) is very desirable. In fact, biofuels are not only environmentally sustainable, but also potentially inexhaustible due to the large amounts of waste biomasses from which they can be retrieved. In the present study, a model compound (micro-crystalline cellulose) was dissolved in phosphoric acid and converted at 80 °C to glucose, thereby providing the possible substrate for fermentation to bioethanol. Results revealed that after 1 h heating, the reaction had the largest glucose yield as compared to similar studies done by using other acid catalysts. In addition, the temperature applied here was from 40 to 60 °C lower than those already reported in literature for acid-driven cellulose degradations. Phosphoric acid allowed both glucose and levulinic acid achievement. The latter is usually used to synthesize fuel additives, catalysts, solvents and herbicides, thereby enhancing the added value of the conversion of cellulose to glucose in phosphoric acid. Finally, 1H T1 NMR relaxometry showed its suitability to monitor cellulose degradation. The advantages of relaxomety are its quickness since only few minutes are needed to obtain relaxograms, and the possibility to use raw mixtures without the needing of sample preparation.  相似文献   

20.
固体酸改质生物油的研究   总被引:12,自引:0,他引:12  
利用乙酸和乙醇生成乙酸乙酯的酯化反应为模型反应,筛选得到催化活性最好的固体酸催化剂40%SiO2/TiO2SO42-。 在一定的反应条件下,添加固体酸催化剂和溶剂,生物油的品质得到提高,热值提高了50.7%,运动黏度降低到原来的10%,密度降低了22.6%。生物油改质前后的GC MS分析表明,固体酸可以将生物油中含有的有机羧酸转化为酯类,如甲酸酯、乙酸酯等,使生物油中的羧酸组分发生了催化酯化反应,改善了生物油的品质,生物油物理化学性能得到明显的提高。3A分子筛对生物油的脱水作用不显著,对酸性、密度、黏度等方面影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号