首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of dimethyl ether ions with neutral amino alcohols were examined in both a quadrupole ion trap mass spectrometer and a triple quadrupole mass spectrometer. These ion-molecule reactions produced two types of ions: the protonated species [M+l]+ and a more complex product at [M+13]+. The abundance of the [M+13]+ ions relative to that of the [M+1]+ ions decreases with increasing formal interfunctional distance. Multistage collision-activated dissociation techniques were used to characterize the [M+13]+ product ions, their reactivities, and the mechanisms for their formation and dissociation. In addition, molecular semiempirical calculation methods were used to probe the thermochemistry of these reactions. Reaction at the amino alcohol nitrogen site is favored, and the resulting [M+13]+ addition products may cyclize for additional stabilization. Comparisons were made among the behavior of related compounds, such as alcohols, diols, amines, and diamines. The alcohols reacted only to form the protonated species, but the diols, amines, and diamines all formed significant amounts of [M+13]+ ions or related dissociation products.  相似文献   

2.
The fragmentation pathways and mechanisms for 27 ferrocene carbamate esters of saturated alkyl primary, secondary and tertiary alcohols were investigated using energy-resolved electrospray tandem mass spectrometry (ES-MS/MS). The mechanisms that control the formation and abundance of the three product ions common to all the derivatives, which appear at m/z 201, 227 and 245, were elucidated. Plotting the relative abundances of the three product ions versus a range of center-of-mass collision energies provided a graphical representation of the behavior of the fragmentation process that was directly comparable from compound to compound. As a result, it was possible to compare product ion spectra of the different derivatives to distinguish among different alcohol structural types. Straight-chain primary alcohols were easily distinguished from tertiary alcohols. Both of these structural types, including positional isomers, produced product ion spectra that were distinct from those of beta-branched primary alcohols, or acyclic secondary alcohols or cyclic secondary alcohols. The latter three alcohol types display similar product ion spectra and therefore cannot be distinguished from one another on the basis of these spectra alone.  相似文献   

3.
Ethyl sulfate (EtS)--a new direct marker for ethanol intake besides ethyl glucuronide (EtG) and others--was detected in urine samples by electrospray ionization tandem mass-spectrometry (LC-ESI-MS/MS). Ethyl sulfate sodium salt was used for method development, yielding a precursor [M - H]- m/z 125 and product ions m/z 97 [HSO4]- and m/z 80 [SO3]-. Pentadeuterated EtS (D5-EtS) was synthesized by esterification of sulfuric acid with anhydrous hexadeutero ethanol ([M - H]- m/z 130, product ions m/z 98 [DSO4]- and m/z 80 [SO3]-). After addition of D5-EtS and D5-EtG, urine samples were analyzed by direct injection into the gradient LC-MS/MS system. Analysis was performed in accordance with forensic guidelines for confirmatory analysis using one precursor and two product ions. EtS has been detected (in addition to EtG) in the urine samples of nine volunteers after drinking sparkling wine containing between 9 and 49 g of ethanol. Both EtS and EtG could be detected up to 36 h after consumption of alcohol. The excretion profile was found to be similar to that of EtG. No EtS was found in teetotalers' urine samples. Method validation parameters are presented. EtS was stable in urine upon storage up to twenty days at room temperature. In addition to EtG, EtS can be used to detect recent alcohol consumption, thus providing a second marker for the time range of up to approximately one day after elimination of ethanol from urine samples. The determination of EtS can be used in addition to EtG as proof of ethanol consumption in workplace monitoring programs.  相似文献   

4.
The fragmentation of dihydropyridine calcium-channel antagonists are compared by electrospray ionization (ESI) and atmospheric pressure photonization (APPI). The results demonstrate that in ESI the preferred ionization process is in positive mode, with the mass spectra of [M+H]+ showing base peak ions probably formed by loss of alcohols from carboxyl groups. Conversely, in APPI, a high intense peak is observed in negative mode due to deprotonated molecule [M-H]- after two serial 1, 2-hydride shifts leading to a rearranged deprotonated molecule [M-H]-. These ions undergo another 1,2-hydride shifts to produce a nitro-phenyl product ion of m/z 122. The APPI is also used to develop a method for the quantitation of dihydropyridines (e.g., nifedipine) in human plasma.  相似文献   

5.
ESI and CID mass spectra were obtained for four pyrimidine nucleoside antiviral agents and the corresponding compounds in which the labile hydrogens were replaced by deuterium using gas-phase exchange. The number of labile hydrogens, x, was determined from a comparison of ESI spectra obtained with N(2) and with ND(3) as the nebulizer gas. CID mass spectra were obtained for [M + H](+) and [M - H](-) ions and the exchanged analogs, [M(D(x)) + D](+) and [M(D(x)) - D](-), produced by ESI using a SCIEX API-III(plus) mass spectrometer. Protonated pyrimidine antiviral agents dissociate through rearrangement decompositions of base-protonated [M + H](+) ions by cleavage of the glycosidic bonds to give the protonated bases with a sugar moiety as the neutral fragment. Cleavage of the glycosidic bonds with charge retention on the sugar moiety eliminates the base moiety as a neutral molecule and produces characteristic sugar ions. CID of protonated pyrimidine bases, [B + H](+), occurs through three major pathways: (1) elimination of NH(3) (ND(3)), (2) loss of H(2)O (D(2)O), and (3) elimination of HNCO (DNCO). Protonated trifluoromethyl uracil, however, dissociates primarily through elimination of HF followed by the loss of HNCO. CID mass spectra of [M - H](-) ions of all four antiviral agents show NCO(-) as the principal decomposition product. A small amount of deprotonated base is also observed, but no sugar ions. Elimination of HNCO, HN(3), HF, CO, and formation of iodide ion are minor dissociation pathways from [M - H](-) ions.  相似文献   

6.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

7.
A series of six bimetallic oxovanadium complexes (1-6; only one was purified) were investigated by electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QTOF-MS/MS) in negative-ion mode. Radical molecular anions [M](.-) were observed in MS mode. Fragmentation patterns of [M](.-) were proposed, and elemental compositions of most of the product ions were confirmed on the basis of the high-resolution ESI-CID-MS/MS spectra. A complicated series of low-abundance product ions similar to electron impact (EI) ionization spectra indicated the radical character of the precursor ions. Fragment ions at m/z 214, 200, and 182 seem to be the characteristic ions of bimetallic oxovanadium complexes. These ions implied the presence of a V-O-V bridge bond, which might contribute to stabilization of the radical. To obtain more information for structural elucidation, three representative bimetallic oxovanadium complexes (1-3) were analyzed further by MS in positive-ion mode. Positive-ion ESI-MS produced adduct ions of [M + H](+), [M + Na](+), and [M + K](+). The fragmentation patterns of [M + Na](+) were different than those of radical molecular anions [M](.-). Relatively simple fragmentation occurred for [M + Na](+), possibly due to even-electron ion character. Negative-ion MS and MS/MS spectra of the hydrolysis product of Complex 1 supported these finding, in particular, the existence of a V-O-V bridge bond.  相似文献   

8.
Alkoxide anions, [M-H](-) from a series of aliphatic diols and alcohols are generated in the source under negative ion electrospray ionisation conditions by cone-voltage fragmentation of the corresponding [M + F](-) ions. The collision-induced dissociation (CID) spectra of [M-H](-) ions consist of [M-H-2H](-) ions, in addition to the other characteristic fragment ions, and the relative abundance of [M-H-2H(-) ions among the series of diols varies as a function of chain length that could be explained based on their stabilities through intramolecular hydrogen bonding. The reactivity of alkoxide anions is studied through ion-molecule reactions with CO(2) in the collision cell of a triple quadrupole mass spectrometer. All the alkoxide anions reacted with CO(2) and formed corresponding carbonate anions, [M-H + CO(2)](-) ions. The reactivity of alkoxide anions within the series of diols also reflected the stability of their [M-H](-) ions.  相似文献   

9.
The extraction of strontium from nitric acid medium was investigated employing DCH18C6 in aliphatic alcohols as the diluents. 80% Butanol-20% octanol mixture was found to give higher D(Sr) values as compared to other alcohols investigated. A linear correlation between the organic phase water content and D(Sr) was observed, based on which the extraction mechanism was postulated. Effect of anion, cation, extractant concentration, nitric acid concentration and temperature on D(Sr) was also studied. Conditions for recovery (>90%) were arrived at and selectivity with respect to other interfering fission products was observed with most of the metal ions studied.  相似文献   

10.
Phosphatidylethanolamines (PEs) are one of the major constituents of cellular membranes, and, along with other phospholipid classes, have an essential role in the physiology of cells. Profiling of phospholipids in biological samples is currently done using mass spectrometry (MS). In this work we describe the MS fragmentation of sodium adducts of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and 2-linoleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (PLPE). This study was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) using three different instruments and also by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All MS/MS spectra show product ions related to the polar head fragmentation and product ions related to the loss of acyl chains. In ESI-MS/MS spectra, the product ions [M+Na-R1COOH-43]+ and [M+Na-R2COOH-43]+ show different relative abundance, as well as [M+Na-R1COOH]+ and [M+Na-R2COOH]+ product ions, allowing identification of both fatty acyl residues of PEs, and their specific location. MALDI-MS/MS shows the same product ions reported before and other ions generated by charge-remote fragmentation of the C3-C4 bond (gamma-cleavage) of fatty acyl residues combined with loss of 163 Da. These fragment ions, [M+Na-(R2-C2H3)-163]+ and [M+Na-(R1-C2H3)-163]+, show different relative abundances, and the product ion formed by the gamma-cleavage of sn-2 is the most abundant. Overall, differences noted that are important for identification and location of fatty acyl residues in the glycerol backbone are: relative abundance between the product ions [M+Na-R1COOH-43]+ > [M+Na-R2COOH-43]+ in ESI-MS/MS spectra; and relative abundance between the product ions [M+Na-(R2-C2H3)-163]+ > [M+Na-(R1-C2H3)-163]+ in MALDI-MS/MS spectra.  相似文献   

11.
Electrospray ionization mass spectrometry of ginsenosides   总被引:1,自引:0,他引:1  
Ginsenosides R(b1), R(b2), R(c), R(d), R(e), R(f), R(g1), R(g2) and F(11) were studied systematically by electrospray ionization mass spectrometry in positive- and negative-ion modes with a mobile-phase additive, ammonium acetate. In general, ion sensitivities for the ginsenosides were greater in the negative-ion mode, but more structural information on the ginsenosides was obtained in the positive-ion mode. [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions were observed for all of the ginsenosides studied, with the exception of R(f) and F(11), for which [M + NH(4)](+) ions were not observed. The signal intensities of [M + H](+), [M + NH(4)](+), [M + Na](+) and [M + K](+) ions varied with the cone voltage. The highest signal intensities for [M + H](+) and [M + NH(4)](+) ions were obtained at low cone voltage (15-30 V), whereas those for [M + Na](+) and [M + K](+) ions were obtained at relatively high cone voltage (70-90 V). Collision-induced dissociation yielded characteristic positively charged fragment ions at m/z 407, 425 and 443 for (20S)-protopanaxadiol, m/z 405, 423 and 441 for (20S)-protopanaxatriol and m/z 421, 439, 457 and 475 for (24R)-pseudoginsenoside F(11). Ginsenoside types were identified by these characteristic ions and the charged saccharide groups. Glycosidic bond cleavage and elimination of H(2)O were the two major fragmentation pathways observed in the product ion mass spectra of [M + H](+) and [M + NH(4)](+). In the product ion mass spectra of [M - H](-), the major fragmentation route observed was glycosidic bond cleavage. Adduct ions [M + 2AcO + Na](-), [M + AcO](-), [M - CH(2)O + AcO](-), [M + 2AcO](2-), [M - H + AcO](2-) and [M - 2H](2-) were observed at low cone voltage (15-30 V) only.  相似文献   

12.
Alkali metal cation adducts, [M+Alk](+), and [M-H](-) ions of four known glycosylated furofuran lignans, (+)-pinoresinol 4-O-beta-D-glucopyranoside, (+)-phylliroside, (+)-8-hydroxypinoresinol 4-O-beta-D-glucopyranoside, and (+)-8-hydroxypinoresinol 8-O-beta-D-glucopyranoside, recently isolated from Carex distachya, were generated by electrospray ionization and allowed to undergo collisionally activated dissociation (CAD) in a quadrupole ion trap (QIT) and in a triple quadrupole (TQ) mass spectrometer. CAD mass spectra of [M+Na](+) and [M+Li](+) adducts revealed the presence of structurally diagnostic product ions. CAD mass spectra of deprotonated glycosylated furofuran lignans showed the typical neutral loss of 162 Da when the glucose residue was bound to a phenolic oxygen atom. When glycosylation occurred at an alcoholic oxygen, as for (+)-8-hydroxypinoresinol 8-O-beta-D-glucopyranoside, a neutral loss of 180 Da represented the main fragmentation pathway. Selective hydrogen/deuterium (H/D) exchange of all the acidic hydrogen atoms of furofuran glycosides, performed by introducing lignan glycosides in D(2)O/CH(3)OD solutions, were employed to obtain information on the nature of the product ions generated during TQ/CAD processes. Energy-resolved TQ/CAD mass spectra of deprotonated lignan glycosides and their deprotonated aglycones were used in a qualitative way to infer information on the integrated energetic picture of CAD fragmentations and to investigate the mechanism of the predominant dissociation/isomerization processes. On the basis of the hypothesized fragmentation mechanisms, gas-phase features of the furofuran ring were derived. The presence of an OH substituent in the C8 position decreased the electron density in the adjacent C8' position, modifying the fragmentation pathway.  相似文献   

13.
The mass spectral properties of glucuronides of the 9- and 10-hydroxylated metabolites of RT-3003 (Vintoperol; (-)-1beta-ethyl-1alpha-hydroxymethyl-1,2,3,4,6,7, 12balpha-octahydroindolo[2,3-a]quinolizine), which were fractionated by high-performance liquid chromatography with fluorescence detection, were investigated using the positive ion electrospray ionization mode. These glucuronides showed predominantly the protonated molecular ion ([M + H](+) ion), and the [M + H](+) ion provided a characteristic product ion spectrum in which abundant ions were obtained at m/z 301, 160 and 142. The first ion, corresponding to the [aglycone + H](+) ion, was produced by neutral loss of the glucuronic acid moiety from the [M + H](+) ion. The product ion spectrum of the [M + H](+) ion of hydroxy-RT-3003 revealed a number of ions common to the glucuronide spectra, suggesting that other two ions observed most likely represent fragmentation of hydroxy-RT-3003. In turn, these glucuronides were positional isomers with respect to the binding site of glucuronic acid. The structures of the isomer pairs were discriminated by the presence of the ion of m/z 318 or 336 in the product ion spectrum. These ions were produced by fission of the C-ring, the same as for the formation of the ions of m/z 160 and 142, as were observed in the product ion spectrum from the [M + H](+) ion of hydroxy-RT-3003. For the formation of these ions, an unusual fragmentation process was proposed, and these ion structures were supported by evidence from the accurate mass measurement data. Additionally, in the sulfates of hydroxylated metabolites, a similar product ion corresponding to the ion of m/z 336 found in the phenolic glucuronides was observed, and was applied for identification of the sulfate metabolites.  相似文献   

14.
Dissociative recombination of ammonia cluster ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for dissociative recombination of H+(NH3)2, H+(NH3)3, D+(ND3)2, and D+(ND3)3 in the collision energy range of 0.001-27 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 1000 K are calculated from the experimental data and compared with earlier results. The fragmentation patterns for the two ions H+(NH3)2 and D+(ND3)2 show no clear isotope effect. Dissociative recombination of X+(NX3)2 (X=H or D) is dominated by the product channels 2NX3+X [0.95+/-0.02 for H+(NH3)2 and 1.00+/-0.02 for D+(ND3)2]. Dissociative recombination of D+(ND3)3 is dominated by the channels yielding three N-containing fragments (0.95+/-0.05).  相似文献   

15.
The interaction of fluorinated alcohols with the anionic hydrido complex [HRe2(CO)9]- (1) has been investigated by NMR spectroscopy. According to the acidic strength of the alcohols, the interaction may result not only in the formation of dihydrogen-bonded ROH...[HRe2(CO)9]- adducts 2, but also in proton transfer to give the neutral species [H2Re2(CO)9] (3). With the weaker acid trifluoroethanol (TFE) evidence for the occurrence of the dihydrogen-bonding equilibrium was obtained by 2D 1H NOESY. The dependence of the hydride chemical shift on TFE concentration at different temperatures provided values for the constants of this equilibrium, from which the thermodynamic parameters were evaluated as deltaH(degrees) = -2.6(2) kcal mol(-1), deltaS(degrees) = -9.3(2) cal mol(-1) K(-1). This corresponds to a rather low basicity factor (E(j) = 0.64). Variable-temperature T1 measurements allowed the proton-hydride distance in adduct 2 a to be estimated (1.80 angstroms). In the presence of hexafluoroisopropyl alcohol (HFIP) simultaneous occurrence of both dihydrogen-bonding and proton-transfer equilibria was observed, and the equilibria shifted versus the protonated product 3 with increasing HFIP concentration and decreasing temperature. Reversible proton transfer between the alcohol and the hydrido complex occurs on the NMR timescale, as revealed by a 2D 1H EXSY experiment at 240 K. For the more acidic perfluoro-tert-butyl alcohol (PFTB) the protonation equilibrium was further shifted to the right. Thermal instability of 3 prevented the acquisition of accurate thermodynamic data for these equilibria. The occurrence of the proton-transfer processes (in spite of the unfavorable pK(a) values) can be explained by the formation of homoconjugated RO...HOR- pairs which stabilize the alcoholate anions.  相似文献   

16.
Ion mobility spectra for ten alcohols have been studied in an ion mobility spectrometry apparatus equipped with a corona discharge ionization source. Using protonated water cluster ions as the reactant ions and clean air as the drift gas, the alcohols exhibit different product ion characteristic peaks in their ion mobility spectra. The detection limit for these alcohols is at low concentration pmol/L level according to the concentration calibration by exponential dilution method. Based on the measured ion mobilities, several chemical physics parameters of the ion-molecular interaction at atmosphere were obtained, including the ionic collision cross sections, diffusion coefficients, collision rate constants, and the ionic radii under the hard-sphere model approximation.  相似文献   

17.
[2,2]对二环苯经甲酰化、缩合、拆分得到(Rp)-4-甲酰基[2,2]对二环苯,再与L-亮氨酸的衍生物二齿手性氨基醇经缩合、还原得到由平面手性和中心手性因素构建的化合物(Rp,S)-1,1-二苯基-2-{[2,2]对二环苯基-甲氨基}-4-甲基戊醇.产物结构经IR、MS和1H NMR等进行了表征.用1H NMR考察了其作为主体对客体手性羧酸衍生物消旋体的手性识别能力.  相似文献   

18.
《Tetrahedron》1988,44(11):3139-3148
The β, γ-unsaturated ketones bicyclo[2.2.1]hept-2-en-7-one (10) and 7,7-dimethoxybicyclo[2.2.1]hept-2-en-5-one (15) have been condensed with 1-metalated trans-1-methoxybutadienes (7a or 7b) and 2-isopropenylcyclopentenes (8b or 8c). Oxyanion formation within the resulting alcohols is followed by skeletal rearrangement at room temperature. Careful product analysis has revealed the [3,3] sigmatropic reaction manifold to be followed almost exclusively. Only in the case of 13 is a modest amount (4%) of formal antarafacialretention [1,3] sigmatropic bridgehead carbon migration in evidence. Consequently, the structural features inherent to these alcohols are not conducive to redirecting electronic reorganization to an alternative isomerization process.  相似文献   

19.
Analysis of the isobutane chemical ionization mass spectra of hexenols, cyclohexenols and various syn/anti pairs of bicyclic and tricyclic homoallylic alcohols shows that: (i) the spectra of the allylic alcohols are dominated by [M + H – H2O]+ and [M + C4H9–H2O]+ ions and contain traces of [M + H]+ ions; (ii) [M + H]+ ions are prominent in the spectra of acyclic and certain cyclic homoallylic alcohols; and (iii) [M + H]+ ions dominate the spectra of other acyclic unsaturated alcohols. The [M + H]+ ions may result from either: (a) protonation of the hydroxyl group, followed by a very rapid intramolecular proton transfer from the protonated hydroxyl group to the carbon–carbon double bond or internal solvation of the protonated hydroxyl group by the carbon–carbon double bond; and/or (b) direct protonation of the carbon–carbon double bond with significant internal solvation of the resulting carbocation by the hydroxyl group, which may lead to carbon–oxygen bond formation to give a protonated cyclic ether. The consequences of placing various geometric constraints on the possible intramolecular interactions between the hydroxyl group and the carbon–carbon double bond in unsaturated alcohols are explored.  相似文献   

20.
The structural determination of sn-1 and sn-2 hexadecanoic lysophosphatidylcholine (LPC) regioisomers was carried out using fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecules produced diverse product ions due mainly to charge remote fragmentations. Based on the information obtained from the CID spectra of protonated and sodiated molecules, sn-1 and sn-2 hexadecanoic LPC isomers could be discriminated. Especially, the abundance ratio of the diagnostic ion pair [m/z 224/226] in the CID spectra of [M + H](+) ions was shown to be greatly different. Moreover, the CID-MS/MS spectra of sodium-adducted molecules for hexadecanoic LPC isomers showed characteristic product ions such as [M + Na - 103](+), [M + Na - 85](+), and [M + Na - 59](+), by which their regio-specificity can be differentiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号