首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The micellization in dilute aqueous solution of Pluronic copolymers P123 (E21P67E21) and F127 (E98P67E98) and mixtures of the two was investigated using static and dynamic light scattering. Gelation of concentrated solutions of the two copolymers and their mixtures was studied using tube inversion and oscillatory rheometry. The two copolymers comicellized to give micelles with narrow size distributions. Clouding temperatures and critical micelle temperatures decreased as the proportion of P123 in the mixture was increased. Micelle association numbers of the mixed micelles lay between the values found for micelles of P123 and F127 alone, whereas micelle radii passed through maximum values in the range 0-50 wt % P123. As judged by the ratio of the thermodynamic to the hydrodynamic radius, the micelle interaction potential changes gradually from soft to hard as the proportion of P123 in the mixture is increased. Regions of cubic and hexagonal (birefringent) gel were defined for concentrated solutions. The high-temperature boundary of the 30 wt % cubic gel decreased monotonically from 90 to 43 degrees C as the proportion of P123 in the mixture was increased from 0 to 100 wt %, whereas the low-temperature boundary was essentially constant at 15 +/- 3 degrees C. Increasing the proportion of P123 in the mixture at 25 degrees C increased the concentration at which the cubic gel was first formed and decreased the concentration at which the hexagonal gel was first formed.  相似文献   

2.
The solubility of n-pentane gas in aqueous solution of sodium dodecyl sulfate (SDS), SDS-0.1 wt% polyethylene oxide (PEG), SDS-0.1 wt% PEG+NaCl (0.1 mol/l), and SDS-0.1 wt% PEG+NaOH (0.1 mol/l) has been determined at 318.15 K. The concentration of SDS (m(SDS)) is up to 50 mmol/kg. The solubility increases linearly with the concentration of SDS above its critical micelle concentration (CMC) or critical aggregation concentration (CAC), indicating that micelles in the solutions solubilize the gas molecules and the solubility of n-pentane gas in the micelles is independent of the SDS concentration. It was found that the solubilization ability of micelles bound to PEG and free micelles to n-pentane gas is almost the same. The solubility of n-pentane gas in micelle phase is three magnitudes higher than that in the bulk solution. The solubilization property of SDS is changed by the addition of PEG, although the solubilizing effect of the polymer alone is not considerable. NaCl and NaOH affect the solubilization noticeably and increase the interaction strength between SDS and PEG. The standard Gibbs energies for the transfer of n-pentane gas from bulk phase to micelle phase are large negative values, indicating that the hydrocarbon gas prefers to exist in the hydrophobic interior of the micelles.  相似文献   

3.
LiCl-induced changes in the micellar hydration and gelation characteristics of aqueous solutions of the two triblock copolymers F127 (EO(100)PO(70)EO(100)) and P123 (EO(20)PO(70)EO(20)) (where EO represents the ethylene oxide block and PO represents the propylene oxide block) have been studied by small-angle neutron scattering (SANS) and viscometry. The effect of LiCl was found to be significantly different from those observed for other alkali metal chloride salts such as NaCl and KCl. This can be explained on the basis of the complexation of hydrated Li(+) ions with the PEO chains in the micellar corona region. The interaction between the chains and the ions is more significant in the case F127 because of its larger PEO block size, and therefore, micelles of this copolymer show an enhanced degree of hydration in the presence of LiCl. The presence of the hydrated Li(+) ions in the micellar corona increases the amount of mechanically trapped water there and compensates more than the water molecules lost through the dehydration of the PEO chains in the presence of the Cl(-) ions. The enhancement in micellar hydration leads to a decrease in the minimum concentration required for the F127 solution to form a room-temperature cubic gel phase from 18% to 14%. Moreover, for both copolymers, the temperature range of stability of the cubic gel phase also increases with increasing LiCl concentration, presumably because of the ability of the Li(+) ions to reduce micellar dehydration with increasing temperature. Viscosity studies on a poly(ethylene glycol) (PEG) homopolymer with a size equivalent to that of the PEO block in F127 (4000 g/mol) also suggest that the dehydrating effect of the Cl(-) ion on the PEG chain is compensated by its interaction with the hydrated Li(+) ions.  相似文献   

4.
Formation and structure transition of the complex composed of triblock copolymer F127 and nonionic surfactant TX-100 have been investigated by 1H NMR spectroscopy, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Three TX-100 concentration regions are identified, within which TX-100/20 mg/mL F127 complex undergoes different temperature-induced structure transitions. In low concentration region (< 9.42 mM), F127 single molecular species (unimers) wrap around TX-100 micelles forming F127/TX-100 complex with TX-100 micelle as the skeleton at a lower temperature (5 degrees C), and the skeleton transfers to F127 micelle at higher temperature (40 degrees C); in intermediate TX-100 concentration region (9.42-94.85 mM), the skeleton of F127/TX-100 complex transfers from TX-100 micelle successively into F127 micelle and TX-100 micelle again upon heating. The interaction of F127 with TX-100 is saturated in high TX-100 concentration region (> 157.57 mM), and free TX-100 micelles coexist with larger clusters of F127/TX-100 complexes. In addition, TX-100-induced F127/TX-100 complex formation and structure transition are also investigated at constant temperatures. The results show that within 5-10 degrees C, F127 unimers mainly adsorb on the surface of TX-100 micelles just like normal water soluble polymers; in the temperature region of 15-25 degrees C, TX-100 micelles prompts F127 micelle formation. Within 30-40 degrees C, TX-100 inserts into F127 micelles leading to the breakdown of F127 aggregates at higher TX-100 concentrations, and the obtained unimers thread through TX-100 micelles forming complex with TX-100 micelle as skeleton.  相似文献   

5.
结合流变学频率扫描和同步辐射小角X射线散射(SAXS), 研究了17R4(PO14-EO24-PO14)含量和温度对17R4/F127(EO99-PO65-EO99)混合水溶液凝胶结构的影响. 结果表明, 溶胶、 软凝胶和硬凝胶分别对应无序结构、 无序与立方相共存结构以及立方相结构. 对于F127水溶液体系, 可以将F127形成的胶束看作硬球, 随着温度的升高, 胶束的硬球半径和胶束中F127链的聚集数随之减小, 这是因为17R4在较低温度下很难形成胶束, 当温度升高时, 17R4链参与胶束的形成, 从而使胶束数目增加, 因此每个胶束中的F127链数也随之减小. 当17R4含量较高时, 胶束外壳中F127部分的PEO链段数随着温度升高而减小, 胶束外壳变得更软, 因此, 当17R4/F127摩尔比为2: 1时, 混合溶液在高温下呈现面心立方(fcc)到体心立方(bcc)的结构转变.  相似文献   

6.
We present results on the effects of various hydrophobic drugs and additives on the micellar structure of Pluronic F127 solutions. Small-angle neutron scattering experiments on 5wt% F127 solutions were used to measure micelle core size (R(1)), micelle corona size (R(2)), intermicellar interaction distance (R(int)), polydispersity (sigma), and aggregation number (N(agg)); dynamic light scattering was used to measure critical micelle concentration (CMC); and ultraviolet spectroscopy was used to measure drug solubility and apparent micelle-water partition coefficient (K(mw)). The core and corona size were found to generally increase in the presence of the drugs, as did R(int). Both sigma and N(agg) were found to decrease in the presence of most of the drugs, and the CMC was found to vary considerably with no clear correlation. A design of experiments (DOE) approach was used to analyze the results and build empirical correlations. All of the parameters from the SANS experiments were found to depend strongly on drug solubility, with a weak dependence on K(mw) in most cases. The aggregation number, however, was found to depend strongly on both K(mw) and solubility. The correlations can be used to roughly predict the structural parameters of F127 micelles for other hydrophobic drugs.  相似文献   

7.
The effect of the aggregation state of Pluronic copolymer (PEO100–PPO65–PEO100, F127) and the concentration of hydrophilic modified ibuprofen (Ibuprofen–PEG800, IP800) on the interaction between F127 and IP800 was systematically investigated by nuclear magnetic resonance, dynamic light scatter (DLS), surface tension, and freeze-fractured transmission electron microscopy. In the solution of F127 unimers (5 °C), F127 unimers tended to wrap around IP800 micelles, and the binding model of F127 unimers to IP800 micelles transferred from wrapping around to partly threading through with increasing IP800 concentration. The latter binding model was straightly confirmed by nuclear Overhauser enhancement spectroscopy. As the aggregation state of F127 is in the beginning of the micellization (20 °C), the addition of IP800 significantly promoted the micellization of F127 to form the F127/IP800 complex with F127 micelles as the skeleton called the F127–micelle complex. The sudden decrease of the size obtained from DLS stemmed from the disruption of the F127–micelle complex and accompanying rehydration of PPO which is weaker compared with refs. The amount of IP800 to disintegrate the F127–micelle complex increased in the F127–micelle-dominated solution (40 °C) compared to that at 20 °C.  相似文献   

8.
添加剂对PVDF相转化过程及膜孔结构的影响   总被引:20,自引:0,他引:20  
研究了PVP、PEG及LiCl 3种成孔添加剂下PVDF DMAc H2 O 添加剂体系的成膜机理 .无论那种添加剂的铸膜液相转换成膜过程中都存在凝胶分相和液液分相两种相变方式 ,在 30~ 6 0℃时凝胶分相在较低的非溶剂浓度下先于液液分相发生 ,LiCl作为添加剂较PEG、PVP对铸膜液有较强的致凝胶作用 ,成膜过程中凝胶分相段时间依PVP、PEG、LiCl的顺序延长 ,导致液液分相初始分相点处聚合物浓度增大 ,阻止了大孔结构的充分发展 .制得的膜依PVP、PEG、LiCl的顺序有效孔隙率和通量降低 ,结晶度升高 .以LiCl为添加剂制得的膜几乎不改变PVDF膜的疏水性 ,而以PVP或PEG为添加剂的膜隔水压差降低约 2 0kPa .  相似文献   

9.
We have investigated a mixed fluorinated-hydrogenated surfactant-based system [C8F17C2H4(OC2H4)9-C12H25(OC2H4)8] in water. The phase diagram exhibits that the micellar domain can be divided into three parts: above 80 wt% of water both hydrogenated and fluorinated surfactants are completely miscible and they formed mixed micelles in all proportion. When the water concentration is decreased from 80 to 60 wt% a gap of miscibility appears and two micellar zones, one fluorocarbon-rich micelles and one hydrocarbon-rich micelles are observed. The liquid crystal domain is composed of one fluorocarbon-rich (H(F)(1)) and one hydrocarbon-rich (H(H)(1)) hexagonal phase. The hydrophobic radius and the cross-sectional area remain constant in the H(H)(1) and in the H(F)(1) domains. Moreover, SAXS measurements proved that the hydrophobic chains in the liquid crystal phases adopt rather an extended conformation. Then the mixture of surfactants was used as template for the preparation of mesoporous materials. Mesostructured silicas with a well hexagonal array of their channels were prepared via a cooperative templating mechanism (CTM), if the loading of fluorinated surfactant is larger than 50%. Decreasing the proportion of the fluorinated amphiphile in the mixture leads to the formation of mesoporous silica with a disordered structure. In this case the channel arrangement is no longer governed by the fluorinated surfactant but by the hydrogenated one.  相似文献   

10.
Poly(vinyl pyrrolidone) (PVP) was grafted onto Pluronic F127 (PEO-PPO-PEO) to produce novel amphiphilic PVP-g-F127 graft copolymers. A controlled synthesis method was used to graft PVP onto different parts of F127. Two types of graft polymers were obtained: one has PVP grafted onto the PEO part of F127 and the other has PVP grafted onto the PPO part of F127. The association behavior of the two modified polymers was examined using differential scanning calorimetry, surface tension measurements, and dynamic light scattering.  相似文献   

11.
The formation of reversed micellar systems composed of phosphatidylcholine (PC) and fatty acid was newly demonstrated by a significant increase in water content in the organic ethyl oleate phase when the micelles were prepared by the contact method. The solubilized water concentration in the reversed micellar organic phase reached 3 wt%. The new systems are expected to be used as highly biocompatible reversed micellar systems. The structure of the reversed micelles composed of PC and oleic acid was characterized by determining the water concentration and by small-angle X-ray scattering analysis. The reversed micelles composed of PC and oleic acid formed in ethyl oleate were spherical. The radius of gyration was between 30 and 50 Å. The size of the reversed micelles decreased with an increase in the oleic acid concentration and was independent of the PC concentration. Experimental results indicated that the structure of the reversed micellar system was determined by the oleic acid concentration. An increase in the PC concentration caused an increase in the number of reversed micelles of the same size. These reversed micellar systems are expected to be used as solubilization media in pharmaceutical and food industries because they are not toxic.  相似文献   

12.
Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method.  相似文献   

13.
The self-assembly and gelation properties of a set of four octo-peptides AEAEAKAK, AEAKAEAK, FEFEFKFK and FEFKFEFK based on alanine (A), phenylalanine (F), lysine (K) and glutamic acid (E) were investigated via small angle neutron scattering (SANS). The SANS experiments suggest that AEAKAEAK peptide does not self-assemble in solution while AEAEAKAK form rod-like structure i.e.: fibres with a radius of ∼3.3 nm. The latter peptide does not form a gel suggesting that the fibres do not aggregate and form a three-dimensional network. On the other hand FEFEFKFK and FEFKFEFK peptides were found to form gels for concentrations higher than ∼7 mg ml−1. Below the critical gelation concentration these peptides were also found to form fibrillar structures with smaller average radii of ∼1.7 nm. Above the critical gelation concentration a scattering maximum is observed in the scattered intensity curve. From the position of the maximum a rough estimation of the mesh size of the gel network could be derived and was found to vary between 15 and 30 nm depending on the gel concentration.  相似文献   

14.
对PEO-PPO-PEO(127)三嵌段共聚物的水溶液行为及添加十二烷基硫酸钠(SDS)后对共聚物溶液行为的影响进行了研究.利用荧光探针技术对不同SDS浓度下F127/SDS体系的胶来形成进行研究,并研究了SDS对F127浓溶液凝胶化行为的影响.结果表明:随着SDS浓度的增大,F127稀溶液胶束的形成受到抑制,SDS浓度愈大,形成的胶束结构就愈疏松.对F127浓溶液来说,SDS与F127摩尔比小于2时,体系易于凝胶化;但当SDS浓度增大,其与F127摩尔比大于2时,体系开始难于凝胶化,直至摩尔比大于5时,体系不再形成凝胶.  相似文献   

15.
采用耗散粒子动力学(Dissipative particle dynamics, DPD)模拟方法研究了三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO)的胶束化和凝胶化行为. 通过模拟得到了F127(EO99PO65EO99)水溶液的临界胶束浓度和临界凝胶浓度. 结果发现, 在298 K、 质量分数低于40%时, F127水溶液中形成的胶束形状均为球形. 此外,进一步研究了亲水嵌段长度对胶束结构及凝胶形成浓度的影响, 结果发现, 亲水嵌段越短, 越有利于长椭球状胶束的形成, 而临界凝胶浓度随着亲水嵌段PEO长度的增加而降低.  相似文献   

16.
Aqueous dispersions of mixed egg yolk phosphatidylcholine (PC) and poly(ethylene glycol) (PEG) modified distearoyl phosphatidylethanolamine (DSPE) were investigated with the purpose of determining shape, size, and conformation of the formed mixed micelles. The samples were prepared at a range of DSPEPEG to PC molar ratios ([DSPEPEG/PC] from 100:0 to 30:70) and with, respectively, DSPEPEG2000 and DSPEPEG5000, where 2000 and 5000 refer to the molar masses of the PEG chains. Particle shape and internal structure were studied using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The contrast of the micelles is different for X-rays and neutrons, and by combining SANS and SAXS, complementary information about the micelle structure was obtained. The detailed structure of the micelles was determined in a self-consistent way by fitting a model for the micelles to SANS and SAXS data simultaneously. In general, a model for the micelles with a hydrophobic core, surrounded by a dense hydrophilic layer that is again surrounded by a corona of PEG chains in the form of Gaussian random coils attached to the outer surface, is in good agreement with the scattering data. At high DSPEPEG contents, nearly spherical micelles are formed. As the PC content increases the micelles elongate, and at a DSPEPEG/PC ratio of 30:70, rodlike micelles longer than 1000 angstroms are formed. We demonstrate that by mixing DSPEPEG and PC a considerable latitude in controlling the particle shape is obtained. Our results indicate that the PEG chains in the corona are in a relatively unperturbed Gaussian random coil conformation even though the chains are far above the coil-coil overlap concentration and, therefore, interpenetrating. This observation in combination with the observed growth behavior questions that the "mushroom-brush"transition is the single dominating factor for determining the particle shape as assumed in previous theoretical work (Hristova, K.; Needham, D. Macromolecules 1995, 28, 991-1002).  相似文献   

17.
万东华  郑欧  周燕  吴莉瑜 《物理化学学报》2010,26(12):3243-3248
研究了PluronicF127胶团溶液对药物布洛芬(IBU)的增溶作用.通过芘探针荧光法测定了不同温度下F127在水溶液和0.01mo·lL-1pH7.4磷酸盐缓冲生理(PBS)溶液中的临界胶束浓度(cmc),采用高效液相色谱(HPLC)测定了F127溶液中布洛芬的溶解度,并依据公式计算了增溶参数(摩尔增溶量c和胶团-水分配系数K),考察了温度、溶剂和F68的加入对F127胶团化行为及其对布洛芬增溶作用的影响.结果表明:布洛芬的溶解度随F127质量分数的提高线性增加;随着温度升高,cmc急剧下降,胶团内核的疏水性增强,χ和K稍有增大;与水溶液相比,在PBS溶液中cmc减小,χ几乎不变,K显著降低;F68的加入对F127胶团的性质几乎无影响,对增溶的影响也不明显.对增溶参数的分析表明,K反映的是药物布洛芬的性质,χ则可反映嵌段共聚物F127的溶解效能,并证实了布洛芬是通过F127胶团的内核和栅栏层而实现增溶的.  相似文献   

18.
The interaction of sodium dodecyl sulfate (SDS) in aqueous solution with poly(N-vinyl-2-pyrrolidone) (M(w) = 55,000 g/mol) in the presence of poly(ethylene glycol) (M(w) = 8000 g/mol) is investigated by electrical conductivity, zeta potential measurements, viscosity measurements, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate that SDS-polymer interaction occurs at low surfactant concentration, and its critical aggregation concentration is fairly dependent on polymer composition. The polymer-supported micelles have average aggregation numbers dependent on surfactant concentration, are highly dissociated when compared with aqueous SDS micelles, and have zeta potentials that increase linearly with the fraction of PVP at constant SDS concentration. The analysis of the SAXS measurements indicated that the PVP/PEG/SDS system forms surface-charged aggregates of a cylindrical shape with an anisometry (length to cross-section dimension ratio) of about 3.0.  相似文献   

19.
A study of the H-bonding between poly(ethylene glycol) (PEG) and polyvinylpyrrolidone (PVP) in the presence of supercritical carbon dioxide at various temperatures, pressures, different M(w) of PEG and PVP and different PEG/PVP ratios is presented. In situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate H-bonding by examining changes in the relative intensities and positions of peak maxima of the 2nd derivative ν(C=O) bands associated with 'free' and H-bonded C=O groups. In general, relative intensities of bands associated with H-bonded CO groups decreased upon CO(2) sorption and was accompanied by an increase in intensity of bands associated with 'free' C=O groups. At the same time, these bands were shifted to higher wavenumbers. These shifts were attributed to the shielding effect of CO(2) molecules on H-bonding interactions between PEG and PVP. The magnitude of the effects of CO(2) shielding generally increased with decreasing polymer M(w) and increasing CO(2) content. However, upon CO(2) venting the extent of the H-bonding between PEG and PVP reappeared. The extent of H-bonding recovery was greatest for blends with low M(w) PEG (M(w): 4×10(2)) and PVP (M(w): 9×10(3)) and PEG content ≥0.54 wt% under mild conditions of pressure (80 bar) and temperature (35°C). For the same low M(w) blends, increasing pressure to 150 bar, or temperature to 50°C, showed poor H-bond recovery upon CO(2) venting. Overall, it was shown that supercritical CO(2)-induced shielding of H-bonding interactions in polymer blends is reversible upon CO(2) venting, and the magnitude of both was influenced by processing conditions and blend composition.  相似文献   

20.
本文在三嵌段共聚物Pluronic F127/十二烷基硫酸钠(SDS)混合表面活性剂体系中制备了直径为 3~4 μm的线球状 Ag 颗粒。实验发现随着体系中SDS浓度的增加,组成Ag微球的亚单元从椭球状经由棒状变成了纳米线。动态光散射数据表明随着SDS的加入,F127胶束被F127/SDS混合胶束所取代,且混合胶束尺寸随着SDS浓度的变化而变化。实验表明SDS的烷基链段与F127的憎水PPO链段的相互吸引作用,以及SDS亲水基团之间的静电排斥作用将影响产物的最终结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号