首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel imaging mode for high-resolution transmission electron microscopy is described. It is based on the adjustment of a negative value of the spherical aberration C S of the objective lens of a transmission electron microscope equipped with a multipole aberration corrector system. Negative spherical aberration applied together with an overfocus yields high-resolution images with bright-atom contrast. Compared to all kinds of images taken in conventional transmission electron microscopes, where the then unavoidable positive spherical aberration is combined with an underfocus, the contrast is dramatically increased. This effect can only be understood on the basis of a full nonlinear imaging theory. Calculations show that the nonlinear contrast contributions diminish the image contrast relative to the linear image for a positive-C S setting whereas they reinforce the image contrast relative to the linear image for a negative-C S setting. The application of the new mode to the imaging of oxygen in SrTiO3 and YBa2Cu3O7 demonstrates the benefit to materials science investigations. It allows us to image directly, without further image processing, strongly scattering heavy-atom columns together with weakly scattering light-atom columns.  相似文献   

2.
About 1 monolayer of palladium was deposited onto a silicon (111) 7 x 7 surface at a temperature of about 550 K inside an ultrahigh vacuum transmission electron microscope, resulting in formation of Pd2Si nanoislands and a 1 x 1 surface layer. Pd clusters created from an excess of Pd atoms on the 1 x 1 surface layer were directly observed by in situ plan view high-resolution transmission electron microscopy. When an objective aperture was introduced so that electron diffractions less than 0.20 nm were filtered out, the lattice structure of the 1 x 1 surface with 0.33 nm spacing and the Pd clusters with a trimer shape were visualized. It was found that image contrast of the 1 x 1 lattice on the specific height terraces disappeared, and thereby an atomic structure of the Pd clusters was clearly observed. The appearance and disappearance of the 1 x 1 lattice was explained by the effect of the kinematical diffraction. It was identified that a Pd cluster was composed of three Pd atoms without a centered Si atom, which is consistent with the model proposed previously. The feature of the Pd clusters stuck at the surface step was also described.  相似文献   

3.
We report on the fabrication and characterization of biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging. The anti-cancer antigen 19-9 monoclonal antibody (a cancer-targeting antibody) was conjugated onto the magnetic contrast agents in an effort to detect pancreatic tumor. The structure, size, morphology and magnetic property of the biofunctional magnetic nanoparticles are characterized systematically by means of transmission electron microscopy and X-ray diffractometry. Furthermore, the interaction between the nanoparticles and pancreas cancers cells are investigated by atomic force microscope and transmission electron microscopy. Magnetic resonance imaging demonstrates that the conjugated nanoparticles can effectively target cancer cells both in vitro and in vivo, suggesting that they potentially can be used as contrast agents for magnetic resonance imaging of pancreas cancer.  相似文献   

4.
Bright-field image contrast of thermotropic cholesteric liquid crystalline materials in the transmission electron microscope (TEM) is investigated. Possible sources of contrast for these systems are discussed in terms of their molecular anisotropy. A cholesteric side-chain liquid crystalline compound was investigated with TEM, low voltage high resolution scanning electron microscopy (LVHRSEM), and atomic force microscopy (AFM) to determine the origin of the strong contrast observed in these systems using bright-field transmission electron microscopy. Initial contrast of thin microtomed sections, as viewed with TEM low dose techniques and an image intensifier, was much weaker than observed under normal viewing conditions. The periodic steady state contrast typically observed for these materials is the result of beam damage. Furthermore, the surface of microtomed samples (parallel to the cholesteric helical axis) is corrugated with a periodicity of 1/2 the pitch due to a preferred fracture path in the glassy cholesteric state. AFM profile analysis shows an average peak to valley height of approximately 20-25 nm. AFM of free surfaces from aligned films also indicates a corrugation with a periodicity equal to 1/2 the pitch with substantially smaller average corrugation depths. TEM indicates a series of +1/2 and -1/2 disclination lines at the surface due to a rotation of the preferred helix direction parallel to the surface, consistent with previously reported models.  相似文献   

5.
This article looks at atomic force microscopy as an important aid to characterize the self-nanoemulsifying formulation of glibenclamide, lovastatin, and carvedilol in conjunction with other sophisticated technique, viz., transmission electron microscopy and photon correlation spectroscopy. Sizes obtained by processing the atomic force microscopy (AFM) image are comparable with those obtained from transmission electron microscope. Although in the present study, the mean particle size obtained from photon correlation spectroscopy does not correlate to the findings of atomic force microscopy and transmission electron microscopy, but the poly-disperse index values correlate well with the findings of AFM and transmission electron microscopy where uniform particle size was observed in aqueous dispersion of self-nanoemulsifying formulation of glibenclamide, lovastatin, and carvedilol.  相似文献   

6.
We have achieved atomic-resolution imaging of single dopant atoms buried inside a crystal, a key goal for microelectronic device characterization, in Sb-doped Si using annular dark-field scanning transmission electron microscopy. In an amorphous material, the dopant signal is largely independent of depth, but in a crystal, channeling of the electron probe causes the image intensity of the atomic columns to vary with the depths of the dopants in each column. We can determine the average dopant concentration in small volumes, and, at low concentrations, the depth in a column of a single dopant. Dopant atoms can also serve as tags for experimental measurements of probe spreading and channeling. Both effects remain crucial even with spherical aberration correction of the probe. Parameters are given for a corrected Bloch-wave model that qualitatively describes the channeling at thicknesses 20 nm, but does not account for probe spreading at larger thicknesses. In thick samples, column-to-column coupling of the probe can make a dopant atom appear in the image in a different atom column than its physical position.  相似文献   

7.
Cs correctors have revolutionized transmission electron microscopy (TEM) in that they substantially improve point resolution and information limit. The object information is found sharply localized within 0.1 nm, and the intensity image can therefore be interpreted reliably on an atomic scale. However, for a conventional intensity image, the object exit wave can still not be detected completely in that the phase, and hence indispensable object information is missing. Therefore, for example, atomic electric-field distributions or magnetic domain structures cannot be accessed. Off-axis electron holography offers unique possibilities to recover completely the aberration-corrected object wave with uncorrected microscopes and hence we would not need a Cs-corrected microscope for improved lateral resolution. However, the performance of holography is affected by aberrations of the recording TEM in that the signal/noise properties ("phase detection limit") of the reconstructed wave are degraded. Therefore, we have realized off-axis electron holography with a Cs-corrected TEM. The phase detection limit improves by a factor of four. A further advantage is the possibility of fine-tuning the residual aberrations by a posteriori correction. Therefore, a combination of both methods, that is, Cs correction and off-axis electron holography, opens new perspectives for complete TEM analysis on an atomic scale.  相似文献   

8.
Resolving interstitial hydrogen atoms at the surfaces and interfaces is crucial for understanding the mechanical and physicochemical properties of metal hydrides. Although palladium (Pd) hydrides hold important applications in hydrogen storage and electrocatalysis, the atomic position of interstitial hydrogen at Pd hydride near surfaces still remains undetermined. We report the first direct imaging of subsurface hydrogen atoms absorbed in Pd nanoparticles by using differentiated and integrated differential phase contrast within an aberration-corrected scanning transmission electron microscope. In contrast to the well-established octahedral interstitial sites for hydrogen in the bulk, subsurface hydrogen atoms are directly identified to occupy the tetrahedral interstices. DFT calculations show that the amount and the occupation type of subsurface hydrogen atoms play an indispensable role in fine-tuning the electronic structure and associated chemical reactivity of the Pd surface.  相似文献   

9.
碳膜的制备及其在纳米颗粒观察中的应用   总被引:3,自引:0,他引:3  
阐述了透射电镜中碳膜的制备方法,并讨论了影响碳膜质量的因素,用这种碳膜支持纳米颗粒在透射电镜下观察,碳膜在电子束的长时间照射下,不姓变形和起皱图象清晰衬底均匀。  相似文献   

10.
透射电子显微镜是解析沸石分子筛新结构、 分析结构缺陷和研究活性位点等的有力工具. 应用于分子筛研究的透射电子显微术总体上可以分为图像法和衍射法, 包括透射电子显微镜和扫描透射电子显微图像、 选区电子衍射和三维电子衍射, 通常结合其中的几种方法进行分析. 近年来, 随着电子显微镜硬件性能的不断提升, 特别是球差矫正器的广泛应用及各种适用于分子筛等电子束敏感材料的探测器和图像处理技术的不断革新, 在原子尺度观察分子筛的结构已成为可能. 此外, 利用原位电子显微镜技术研究分子筛的生长和催化反应机理也在逐步展开. 本文按电子显微镜方法分类, 综述了近些年基于电子显微镜的分子筛研究, 包括新结构解析、 手性确认和金属负载等的最新进展.  相似文献   

11.
The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.  相似文献   

12.
Integrated differential phase‐contrast scanning transmission electron microscopy (iDPC‐STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low‐dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite‐1; iDPC‐STEM was then used to investigate molybdenum supported on various zeolites including Silicalite‐1, ZSM‐5, and mordenite. Isolated single‐Mo clusters were observed in the micropores of ZSM‐5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one‐to‐one Mo‐Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM‐5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   

13.
Surface fine structure and structural defects in the open framework material VSB-1 have been investigated by electron microscopy. Crystal growth phenomena are proposed by a building unit model: (i) a unit is formed by two building units; (ii) they are linked to form first channels; and (iii) the whole network is grown via a layer-by-layer growth mechanism. A planar defect was observed in high-resolution transmission electron microscope (HRTEM) image taken with the [0001] incidence, and diffuse streaks related to the presence of defects were observed in a series of electron diffraction (ED) patterns. The microstructure model derived from the defect structure gives information on crystal growth. These defects highlight an open site that could be the pillar of a new crystal growth process. The study of defects and crystal growth is important in understanding physical properties such as catalytic or magnetic properties, and in synthesising a new open framework structure.  相似文献   

14.
A study of the fine scale microstructure of PVC was carried out using a combination of high resolution transmission electron microscopy and digital image analysis techniques. The images obtained contained a degree of order of the approximate size and distribution as predicted by the microdomain model of crystallinity in PVC. The microdomain model for crystallinity in PVC has been built up from previous studies using various analytical techniques including wide- and small-angle x-ray diffraction and differential scanning calorimetry. Earlier studies using transmission electron microscopy did not find any direct evidence supporting this model. Significant advances in both electron microscope and image processing technology had taken place since the earlier microscopic studies. The TEM imaging and image analysis procedures that have been utilized in this research may be applicable to the imaging of very fine scale ordering in other polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
For the first time, nascent soot particles are probed by using helium‐ion microscopy (HIM). HIM is a technique that is similar to scanning electron microscopy (SEM) but it can achieve higher contrast and improved surface sensitivity, especially for carbonaceous materials. The HIM microscope yields images with a high contrast, which allows for the unambiguous recognition of smaller nascent soot particles than those observed in previous transmission electron microscopy studies. The results indicate that HIM is ideal for rapid and reliable probing of the morphology of nascent soot, with surface details visible down to approximately 5 nm, and particles as small as 2 nm are detectable. The results also show that nascent soot is structurally and chemically inhomogeneous, and even the smallest particles can have shapes that deviate from a perfect sphere.  相似文献   

16.
Integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low-dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite-1; iDPC-STEM was then used to investigate molybdenum supported on various zeolites including Silicalite-1, ZSM-5, and mordenite. Isolated single-Mo clusters were observed in the micropores of ZSM-5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one-to-one Mo-Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM-5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   

17.
Using ethylene glycol as solvent and reductant, CuCl2·2H2O, (NH2)2CS and self-prepared GaCl3 as the starting materials, CuGaS2 nanostrucutures were synthesized on a large scale at 220 ℃. Powder X-ray diffraction,transmission electron microscopy, field-emission scanning electron microscope, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the products. It demonstrated the evolution of the CuGaS2 particles from spherical assemblies to flowerlike morphology, over time,at 220 ℃. Simultaneously, we elucidated the specific roles of reaction temperature, reaction time and solvent in the formation of the final CuGaS2 nanostructures. A possible formation mechanism of CuGaS2 nanostrucutures was also discussed. The room temperature photoluminescence spectrum showed blue-shift and an increase of intensity, with a decrease in the sizes of CuGaS2 particles.  相似文献   

18.
All common negative stains are salts of heavy metals. To remedy several technical defects inherent in the use of heavy metal compounds, this study investigates whether salts of the light metals sodium, magnesium, and aluminum can function as negative stains. Screening criteria require aqueous solubility at pH 7.0, formation of a smooth amorphous layer upon drying, and transmission electron microscope imaging of the 87-A (8.7-nm) lattice periodicity in thin catalase crystals. Six of 23 salts evaluated pass all three screens; detection of the protein shell in ferritin macromolecules indicates that light metal salts also provide negative staining of single particle specimens. Appositional contrast is less than that given by heavy metal negative stains; image density can be raised by increasing electron phase contrast and by selecting salts with phosphate or sulfate anions, thereby adding strong scattering from P or S atoms. Low-dose electron diffraction of catalase crystals negatively stained with 200 mM magnesium sulfate shows Bragg spots extending out to 4.4 A. Future experimental use of sodium phosphate buffer and magnesium sulfate for negative staining is anticipated, particularly in designing new cocktail (multicomponent) negative stains able to support and protect protein structure to higher resolution levels than are currently achieved.  相似文献   

19.
John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4 angstroms resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen, and nitrogen) that are present in many complex structures. By using sub-angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.  相似文献   

20.
针对数字化透射电子显微镜与传统透射电子显微镜在观察记录系统上存在的差异,通过比较分析数字化透射电子显微镜侧插式电荷耦合器件(CCD)相机采集的图像、操作界面View视窗观察到的图像与电镜示数放大倍数之间的差异,详细地分析了数字化透射电子显微镜侧插式CCD相机采集的数字图片的放大倍数发生变化的原因.可以帮助应用电镜的广大教师及科研工作者更加快速、直观地掌握数字图片确切的放大倍数,更有利于结果的分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号