首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
Sn-9Zn无铅电子钎料助焊剂研究   总被引:12,自引:0,他引:12  
Sn-9Zn共晶合金在一般松香助焊剂条件下润湿性较差。开发了一种新的改性松香助焊剂。用铺展面积测量和润湿天平两种手段,表征不同助焊剂条件下Sn-9Zn合金对铜的润湿性,用失重测量表征助焊剂对铜和焊料合金的腐蚀性。结果表明:在乙醇–松香中加入少量SnCl2作为助焊剂可大大改善Sn-9Zn对铜的润湿性,但对焊料合金有一定的腐蚀性。选择了一种具有较强活性的有机碱性缓蚀剂,含SnCl2的助焊剂中加入该缓蚀剂后可基本消除腐蚀作用,同时还改善了润湿性。  相似文献   

2.
运用莱卡显微镜、X射线衍射仪及电化学测试系统等仪器设备,对(Sn-9Zn)-xBi(x=0,1,3和5)钎料组织性能进行研究.结果表明:当x小于5时,Bi可明显影响(Sn-9Zn)-xBi钎料中富Zn相尺寸及分布,钎料的熔化温度随Bi含量的增加而降低至188℃;钎料的润湿性随Bi含量增加而得到改善,其中以x在1~3为最...  相似文献   

3.
Sn-9Zn合金无铅钎料用助焊剂研究   总被引:9,自引:1,他引:9  
通过测量润湿面积和润湿角,研究不同助焊剂对Sn-9Zn焊料润湿性的影响。结果表明:助焊剂对Sn-9Zn焊料润湿性影响很大,由乳酸、聚乙二醇和SnCl2所构成的助焊剂与Sn-9Zn焊料有很好适应性;同时扫描电镜和能谱分析也表明焊料与Cu基体界面的IMC为Cu5Zn8相,比Sn-37Pb焊料具有更高的剪切强度。  相似文献   

4.
采用自制的压入蠕变装置,研究了共晶型Sn-3.7Ag-0.9Zn无铅钎料合金在333~418K,压入应力为34.1~75.3MPa时的压入蠕变性能,并获得其稳态压入蠕变速率的本构方程;利用XRD和SEM对合金蠕变前后的成分和微观组织进行了分析。结果表明:Sn-3.7Ag-0.9Zn无铅钎料合金的应力指数n为4.6,蠕变激活能Qc为82.03kJ/mol,材料的结构常数A为1.74×10–5,其压入蠕变机制主要是由位错攀移运动控制的蠕变;金属间化合物Ag3Sn、AgZn提高了合金的抗压入蠕变性能。  相似文献   

5.
稀土改性的Sn-58Bi低温无铅钎料   总被引:1,自引:0,他引:1  
研究了微量稀土对Sn-58Bi低温钎料的改性作用.试验添加质量分数为0.1 ?组混合稀土的无铅材料,并对比Sn-58Bi和Sn-58Bi0.5Ag合金.观察了钎料显微组织的变化并做了定量分析,采用DSC测试了钎料的熔化温度,同时测量了钎料的润湿性能、接头强度与硬度.结果表明,微量稀土添加细化了Sn-58Bi钎料合金的显微组织,对钎料的熔化温度几乎没有影响,能显著改善Sn-58Bi钎料的润湿性能和接头剪切强度,而且改善的程度优于添加微量Ag对Sn-58Bi钎料的作用.  相似文献   

6.
Ag对Sn-Pb电子钎料合金性能的影响   总被引:2,自引:0,他引:2  
研究了Ag的合金化对Sn-Pb钎料合金材料性能的影响。并从钎料的润湿性能,机械性能及抗腐蚀性能等方面讨论了Ag的有利作用,研究表明,在一些特定条件下的电子元件的焊接,Sn-Pb-Ag钎料可部分地或全部地替代昂贵的遗金属钎料合金。  相似文献   

7.
向Zn20Sn高温无铅钎料中添加微量铈镧混合稀土(RE),研究了RE的添加量对该钎料合金显微组织及性能的影响。结果表明,添加微量RE的合金显微组织中出现含RE的金属间化合物(IMC)。随着RE的添加,形状各异的IMC的数量显著增加。RE质量分数为0.5%~1.0%的合金的固相线温度不变,而液相线温度略有降低。当RE质量分数为0.5%时,钎料在Cu基板上的铺展面积最大,比Zn20Sn钎料提高了57.6%。但随着RE的继续添加,钎料的润湿性降低。当RE质量分数超过0.1%时,钎料的显微硬度和电阻率随着RE含量的增加而增大。综合考虑,合适的RE添加量为质量分数0.5%。  相似文献   

8.
采用正交试验研究了微量RE和Al对Sn-9Zn无铅焊料电导率、硬度、润湿性及微观组织的影响,并与传统锡铅焊料进行了对比。Sn-9Zn焊料的电性能及力学性能优于传统锡铅焊料,但润湿性较差。添加微量RE和Al可以显著提高Sn-9Zn合金铺展率、细化组织,且不降低焊料电导率和力学性能,最佳w(RE)和w(Al)分别为0.05%和0.10%,铺展率达到61.98%,与Sn-9Zn相比提高了13.40%,硬度为20.90HB,电导率为8.15×106S/m。  相似文献   

9.
锡锌合金是很有潜力的无铅电子焊料合金,润湿性较差是其发展的主要障碍.研究发现:在传统乙醇松香助焊剂中添加质量分数为0.5%的DMA可显著提高其活性,使Sn-9Zn对铜的润湿力和润湿铺展面积都有显著提高;再加入适当比例的乙二胺可使其改善润湿性的效果进一步提高,并大大减轻助焊剂对Sn-9Zn合金的腐蚀性.  相似文献   

10.
微合金化对Sn-9Zn基无铅钎料润湿性能的影响   总被引:7,自引:2,他引:7  
熔炼制备了纯的以及含微量Al、Mg、Ti、Bi、重稀土Y、混合轻稀土RE和一种富P非金属活性组元NM的Sn-9Zn基合金,通过测量这些合金以及商用Sn-37Pb焊料在铜基板上的铺展面积比较了它们对铜的润湿性能。结果表明Al、Ti和 Mg不利于提高合金在铜上的润湿性或附着力;Y的改善作用不大;而Bi、RE和NM则能明显改善Sn-9Zn合金对铜的润湿性。在此基础上进一步研究了RE和NM含量对Sn-9Zn润湿性能的影响。以铺展面积衡量,本研究所达到的最佳改善效果使Sn-9Zn合金对铜的润湿性由Sn-37Pb焊料润湿性水平的45.4%提高到了70.3%。  相似文献   

11.
The morphological evolution of Sn-9wt.%Zn solder under electromigration at a current density of about 105 A/cm2 was examined. Sn extrusion was observed, suggesting that Sn is the dominant moving species under electromigration. In contrast, Zn appeared to be immobile. It was also found that the microstructure of the solder had a significant effect on the electromigration behavior. For the solder with fine Zn precipitates, the surface morphology of the solder was almost unchanged except for the formation of Sn extrusion sites at␣the anode side after electromigration. However, for the solder with coarse Zn precipitates, more Sn extrusion sites were observed, and they were located not only at the anode side but also within the solder. Coarse Zn precipitates appeared to block Sn migration, thus Sn migration was intercepted in front of the Zn precipitates. The Sn atoms accumulated there, which led to its extrusion. The blocking effect was found to depend strongly on the size and orientation of the Zn precipitates.  相似文献   

12.
孙静  孟工戈  陈永生 《电子工艺技术》2011,32(5):262-264,276
研究了BGA直径分别为750μm、1 000μm、1 300μm的Sn-9Zn/Cu焊点剪切强度及其变化规律。采用SEM和EDX对剪切断口进行观察和元素成分分析。试验结果表明,随着焊球直径的增大,焊点剪切强度先减小后增大。剪切断裂位置大部分位于钎料内部,局部位于界面化合物Cu5Zn8处。在相同的剪切高度与剪切速率下,随...  相似文献   

13.
The Sn-3.5Ag and Sn-3.5Ag-0.2Co-0.1Ni lead-free solders were investigated on common electronics substrates, namely, organic solderability preservative (OSP) and electroless Ni/immersion Au (ENIG) surface finishes. The formation of Kirkendall voids at the interfacial region during isothermal solid aging was explored. For the Sn-3.5Ag-0.2Co-0.1Ni/OSP solder joint, the Kirkendall voids were present after isothermal solid-state aging at higher temperature (e.g., 150°C); however, the size of voids did not change remarkably with prolonged aging time due to the depressed Cu3Sn layer growth. For ENIG surface finishes, the 0.2Co-0.1Ni additions seemed to enhance the longitudinal groove-shaped voids at the Ni3P layer; however, void formation at the solder/Ni3Sn4 interface was effectively reduced. This might be attributed to the reduced Sn activity in the solder matrix and the suppressed Ni-P-Sn layer formation.  相似文献   

14.
We have studied the microstructure of the Sn-9Zn/Cu joint in soldering at temperatures ranging from 230°C to 270°C to understand the growth of the mechanism of intermetallic compound (IMC) formation. At the interface between the Sn-9Zn solder and Cu, the results show a scallop-type ε-CuZn4 and a layer-type γ-Cu5Zn8, which grow at the interface between the Sn-9Zn solder and Cu. The activation energy of scallop-type ε-CuZn4 is 31 kJ/mol, and the growth is controlled by ripening. The activation energy of layer-type γ-Cu5Zn8 is 26 kJ/mol, and the growth is controlled by the diffusion of Cu and Zn. Furthermore, in the molten Sn-9Zn solder, the results show η-CuZn grains formed in the molten Sn-9Zn solder at 230°C. When the soldering temperature increases to 250°C and 270°C, the phase of IMCs is ε-CuZn4.  相似文献   

15.
A combination solder of Sn-3.0Ag-0.5Cu (numbers are all in weight percent unless specified otherwise) wrapped by Sn-57Bi-1Ag was tested for application to three-dimensional (3-D) multistack packaging. The experimental variables controlled were the reflow peak temperatures (170, 185, 200, and 230°C), the reflow cycles (up to four times), and the mask which controls the amount of Sn-57Bi-1Ag solder paste (two sizes). We demonstrate and evaluate the combination solder structure, focusing on microstructural changes and the shear strength. The degree of mixing in the combination solder, which is enhanced by an increase in the reflow peak temperature, is independent of the number of reflow cycles. The ball shear strength and the lab shear strength both increased with increases in the reflow peak temperatures. This behavior is explained by the amount of the brittle Bi phase that constitutes the eutectic Sn-Bi phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号