首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The present paper deals with the experimental analysis of a strong decelerated turbulent boundary layer developed on a flat plate. The aim of the study was to examine the effects of pressure gradient on a non-equilibrium boundary layer while indicating local areas of equilibrium flow. The effect of the Reynolds number on a turbulent boundary layer developed with matching the external pressure gradient conditions was also analysed. The emphasis was on the analysis of mean flow statistics i.e. mean velocity profiles, streamwise Reynolds stress and the effect of large- and small-scale interactions by analysing the skewness factor and energy isocontours maps. The comparative analysis of the external data indicated that the structure of the turbulent boundary layer depends not only on local effects of pressure gradient but also on the upstream history of the flow. For the same condition of pressure gradient, the increased momentum is observed near the wall with the increase of the Reynolds number at the Incipient Detachment, where increased turbulence production is also observed, leading to the failure of the outer scaling methods. Surprisingly, the effect of the Reynolds number decays at the intermittent transitory detachment where similar profiles were observed. The upper inflection point in the mean profile corresponded well with the outer maximum of the Reynolds stress and zero crossing of skewness factor. Position of this point occurs at different locations, depending on the flow history effects. The last observation demonstrates that the inflection points results from large- and small-scale interactions, which led to the increased convection velocity of small scales near the wall.  相似文献   

2.
A study is made of the problem of a two-dimensional turbulent boundary layer on the moving surface of a cylindrical body (a Rankine oval with a relative elongation of four) moving at constant velocity in an incompressible fluid. For the numerical simulation of the turbulent flow of the fluid, the boundary layer is divided into exterior and interior regions in accordance with a two-layer model, using different expressions for the coefficients of turbulent transfer for each region. A study was nade of the development of the boundary layer on the body at different speeds of the body surface and different Reynolds numbers. The following integral characteristics were found by numerical calculation: the work of friction as the body is displaced; the work expended on the movement of its surface; and, for a flow regime with separation, the work of the pressure force. In this case the following model of separation flow is assumed: beyond the singular point in the solution of the boundary layer equations that indicates the appearance of a region of reverse flow, the pressure and friction stress on the wall are constant and are determined by their values at the singular point.Translated from Izvestiya Akademii Nauk SSSH, Mekhanika Zhidkosti i Gaza, No. 5, pp. 61–67, September–October, 1984.Finally, the author would like to thank G. G. Chernyi and Yu. D. Shevelev for useful discussions and for their interest in this work.  相似文献   

3.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

4.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

5.
Experiments were conducted in a turbulent boundary layer near separation along a flat plate. The pressure gradient in flow direction was varied such that three significant boundary layer configurations could be maintained. The flow in the test section thus had simultaneously a region of favourable pressure gradient, a region of strong adverse pressure gradient with boundary layer separation and a region of reattached boundary layer. Specially designed fine probes facilitated the measurements of skin friction and velocity distribution very close to the wall. Bulk flow parameters such as skin friction coefficient C f, Reynold's number Reδ2 and shape factors H and G, which are significant characteristics of wall boundary layers were evaluated. The dependence of these parameters on the Reynolds number and along the test section was explored and the values were compared with other empirical and analytical formulae known in the literature.  相似文献   

6.
Experimental measurements address the effects on a turbulent boundary layer of wall roughness on a flat plate and a ramp that produces a separation bubble over the ramp trailing edge. A fully rough flow condition is achieved on the upstream flat plate. The main effect of the wall roughness on the outer layer turbulence on a flat plate is to change the friction velocity. The separation region is substantially larger for the rough-wall case. The rough-wall boundary layer turbulence is less sensitive to the onset of an adverse pressure gradient over the ramp, producing substantially smaller Reynolds stress peaks in upstream flat-plate, wall-unit coordinates.  相似文献   

7.
The present paper addresses experimental studies of Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery. A momentum thickness Reynolds number varies from 1,100 to 20,100 with a wind tunnel enclosed in a pressure vessel by varying the air density and wind tunnel speed. A custom-built, high-resolution laser Doppler anemometer provides fully resolved turbulence measurements over the full Reynolds number range. The experiments show that the mean flow is at most a very weak function of Reynolds number while turbulence quantities strongly depend on Reynolds number. Roller vortices are generated in the separated shear layer caused by the Kelvin–Helmholtz instability. Empirical Reynolds number scalings for the mean velocity and Reynolds stresses are proposed for the upstream boundary layer, the separated region, and the recovery region. The inflectional instability plays a critical role in the scaling in the separated region. The near-wall flow recovers quickly downstream of reattachment even if the outer layer is far from an equilibrium state. As a result, a stress equilibrium layer where a flat-plate boundary layer scaling is valid develops in the recovery region and grows outward moving downstream.  相似文献   

8.
Results of an experimental investigation of the heat exchange in turbulent boundary layer separation zones ahead of cylindrical obstacles at a subsonic air stream velocity are elucidated. The investigation was conducted for changes in the ratio between the obstacle diameter and altitude between 0.25 and 4, between the boundary layer thickness at the separation point and the obstacle altitude between 0.09 and 0.7, between the Reynolds number computed by means of the free stream parameters and the obstacle height between 104 and 4·105. The Mach number reached 0.85. The temperature factor was 0.7. It is shown that the distribution of the heat transfer coefficients in the separation zone depends on the Reynolds and Euler numbers, the ratio between the boundary layer displacement thickness and the diameter (or altitude) of the obstacle, and the ratio between the diameter and the altitude. Criterial dependences are obtained which extend the heat-exchange results at characteristic points of the separation zones, as are also dimensionless distributions of the heat transfer coefficients to determine the heat fluxes on a plate in the plane of symmetry of the separation zone ahead of obstacles.Translated from Zhurnal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, No. 6, pp. 83–89, November–December, 1972.The authors are grateful to V. S. Avduevskii for discussing the research results.  相似文献   

9.
An analytic relation for determining the length of the shock-laminar or turbulent boundary layer interaction zone is obtained on the basis of an analysis of the boundary layer separation criterion. It is shown that as the Mach number of the flow increases, the interaction length decreases, and that with increase in the Reynolds number it behaves nonmonotonically: in the laminar region it increases, while on transition to the turbulent regime it falls sharply and then varies along a curve with a maximum. The results of the calculations are in satisfactory agreement with the existing experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 180–183, March–April, 1987.  相似文献   

10.
The mechanism of turbulent boundary layer separation under the influence of a positive pressure gradient is analyzed. The process of turbulent separation from a smooth wall in a plane diffuser channel has been experimentally investigated. It is shown that separation is determined by the nature of the flow in a certain inner part of the boundary layer, where the friction effect is unimportant. This region of the boundary layer is most exposed to the action of the positive pressure gradient and it is there that the stagnant zone primarily appears.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 69–77, November–December, 1990.  相似文献   

11.
锥体效应对超音速湍流边界层统计特性的影响   总被引:2,自引:0,他引:2  
董明  罗纪生 《力学学报》2008,40(3):394-401
通过直接数值模拟,计算了空间模式下,来流马赫数为2.5, 半锥角为$5^{\circ}$, 零攻角的绝热钝锥湍流边界层,研究了湍流的统计特性,并把结果与超音速平板湍流边界层和马赫数为6的高超音速钝锥湍流边界层的结果进行了比较,重点定量地考察了锥体效应对边界层湍流统计特性的影响. 研究发现,锥体效应对平均温度剖面以及压缩性的影响是显著的;而其它统计量,比如速度壁面律、雷诺应力的分布和湍动能各项的贡献等,受锥体效应的影响很小.   相似文献   

12.
A turbulent separation-reattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter. The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel. At the inlet of the diffuser, Reynolds number based on the diffuser height is 1.2×105 and the velocity is 25.2m/s. The results of experiments are presented and analyzed in new defined streamline-aligned coordinates. The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress. A scale is formed using the maximum Reynolds shear stresses. It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law exists in the forward shear flow. Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model. The length scale is taken from that developed by Schofield and Perry. The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield-Perry velocity scale as well as the edge velocity of the boundary layer. The results of these experiments are presented in this paper.  相似文献   

13.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

14.
Flow and heat transfer characteristics over flat, concave and convex surfaces have been investigated in a low speed wind tunnel in the presence of adverse and favourable pressure gradients (k), for a range of –3.6 × 10–6 ≤ k ≤ +3.6 × 10–6. The laminar near zero pressure gradient flow, with an initial momentum thickness Reynolds number of 200, showed that concave wall boundary layer was thinner and heat transfer coefficients were almost 2 fold of flat plate values. Whereas for the same flow condition, thicker boundary layer and 35% less heat transfer coefficients of the convex wall were recorded with an earlier transition. Accelerating laminar flows caused also thinner boundary layers and an augmentation in heat transfer values by 28%, 35% and 16% for the flat, concave and convex walls at k = 3.6 × 10–6. On the other hand decelerating laminar flows increased the boundary layer thickness and reduced Stanton numbers by 31%, 26% and 22% on the flat surface, concave and convex walls respectively. Turbulent flow measurements at k = 0, with an initial momentum thickness Reynolds number of 1100, resulted in 30% higher and 25% lower Stanton numbers on concave and convex walls, comparing to flat plate values. Moreover the accelerating turbulent flow of k = 0.6 × 10–6 brought about 29%, 30% and 24% higher Stanton numbers for the flat, concave and convex walls and the decelerating turbulent flow of k = –0.6 × 10–6 caused St to decrease up to 27%, 25% and 29% for the same surfaces respectively comparing to zero pressure gradient values. An empirical equation was also developed and successfully applied, for the estimation of Stanton number under the influence of pressure gradients, with an accuracy of better than 4%.  相似文献   

15.
To establish the influence of the unit Reynolds number on the transition of a boundary layer on the side surface of a cone, the transition was investigated on a model of a sharp cone with half-angle = 7.5 ° and lengths from 150 to 400 mm. The experiments were made in a shock tube at Mach number M = 6.1 in the wide range of Reynolds numbers ReeL = 1.3·106-5.5·107. The position of the transition region was determined from the results of measurement of the local heat flux by calorimetric thermocouple converters. Data were obtained on the influence on the transition of the unit Reynolds number at large values. It was also shown that under the investigated conditions the base region does not influence the transition of the boundary layer on the surface of the cone.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 32–38, July–August, 1982.  相似文献   

16.
The boundary region of a turbulent boundary layer contributes greatly to the drag. Intense turbulence is generated in this region. Below we investigate the interaction of an elastic boundary with a viscous sublayer for a decrease in the Reynolds stresses, and for a corresponding decrease in the drag. It does not seem possible to investigate the general case. Therefore, the problem is solved within the framework of the limitations made by Sternberg [1] for the theory of a viscous sublayer in a turbulent flow near a solid smooth wall.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 58–62, May–June, 1971.The authors thanks G. S. Migirenko for advice and remarks given during a discussion of the work.  相似文献   

17.
The Lie group, or symmetry approach, developed by Oberlack (see e.g. Oberlack [26] and references therein) is used to derive new scaling laws for various quantities of a zero pressure gradient turbulent boundary layer flow. The approach unifies and extends the work done by Oberlack for the mean velocity of stationary parallel turbulent shear flows. From the two-point correlation (TPC) equations the knowledge of the symmetries allows us to derive a variety of invariant solutions (scaling laws) for turbulent flows, one of which is the new exponential mean velocity profile that is found in the mid-wake region of flat-plate boundary layers. Further, a third scaling group was found in the TPC equations for the one-dimensional turbulent boundary layer. This is in contrast to the Navier–Stokes and Euler equations, which have one and two scaling groups, respectively. The present focus is on the exponential law in the outer region of turbulent boundary layer corresponding new scaling laws for one- and two-point correlation functions. A direct numerical simulation (DNS) of a flat plate turbulent boundary layer with zero pressure gradient was performed at two different Reynolds numbers Re=750,2240. The Navier–Stokes equations were numerically solved using a spectral method with up to 140 million grid points. The results of the numerical simulations are compared with the new scaling laws. TPC functions are presented. The numerical simulation shows good agreement with the theoretical results, however only for a limited range of applicability. PACS 02.20.-a, 47.11.+j, 47.27.Nz, 47.27.Eq  相似文献   

18.
Plane steady flow is considered in the case of an incompressible fluid in the neighborhood of the separation point of a turbulent boundary layer. It is shown that separation takes place in a region which lies at some small distance downstream from the region of interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 51–60, May–June, 1987.  相似文献   

19.
A study is made of the three-dimensional flow of a viscous gas around a flat plate with an inflection in the generator of the leading edge in the case of strong interaction between the exterior hypersonic flow and the boundary layer. Numerical solutions to the problem are obtained. It is shown that near points of inflection of the profile of the leading edge of a flat wing strong self-induced secondary flows can be formed together with associated local peaks of the heat fluxes and the friction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 40–45, May–June, 1980.  相似文献   

20.
In the present study, an axisymmetric turbulent boundary layer growing on a cylinder is investigated experimentally using hot wire anemometry. The combined effects of transverse curvature as well as low Reynolds number on the mean and turbulent flow quantities are studied. The measurements include the mean velocity, turbulence intensity, skewness and flatness factors in addition to wall shear stress. The results are presented separately for the near wall region and the outer region using dimensionless parameters suitable for each case. They are also compared with the results available in the open literature.The present investigation revealed that the mean velocity in near wall region is similar to other simple turbulent flows (flat plate boundary layer, pipe and channel flows); but it differs in the logarithmic and outer regions. Further, for dimensionless moments of higher orders, such as skewness and flatness factors, the main effects of the low Reynolds number and the transverse curvature are present in the near wall region as well as the outer region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号