首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface and catalytic properties of Cu/Zn mixed oxide catalysts   总被引:1,自引:0,他引:1  
Copper catalysts supported on zinc oxide, with different loading (1–20 wt.% CuO), were prepared by impregnation of the basic zinc carbonate with a water solution of copper nitrate. The impregnated samples were dried at 120°C and calcined at 400–700°C. The surface and catalytic properties of CuO loaded on ZnO were determined by N2 adsorption measurements conducted at −196°C and CO oxidation by O2 at 150–300°C, respectively. The results obtained revealed that the surface and catalytic properties of different solids were dependent upon CuO content and calcination temperature. The specific surface areas of various adsorbents decreased monotonically as a function of both calcination temperature and extent of loading. However, the activation energy of sintering, ΔES, was found to increase by increasing the amount of CuO present. On the other hand, the CO oxidation activity on various catalysts was found to increase progressively by increasing the calcination temperature from 400 to 500°C, then decreased by increasing the temperature from 500 to 700°C. The augmentation of CuO content from 1 to 5 wt.% resulted in an increase in the CO oxidation activity, which decreased by increasing the extent of loading above this limit.  相似文献   

2.
The thermal decomposition of zinc acetate dihydrate Zn(CH3CO2)2·2H2O in some humidity-controlled atmospheres has been successfully investigated by novel thermal analyses, which are sample-controlled thermogravimetry (SCTG), thermogravimety combined with evolved gas analysis using mass spectrometry (TG–MS) and simultaneous measurement of differential scanning calorimetry and X-ray diffractometry (XRD–DSC). The thermal processes of anhydrous zinc acetate in dry gas atmosphere by conventional linear heating experiment initiated with the sublimation around 180 °C, followed by the fusion and the decomposition over 250 °C. SCTG was useful to interpret clearly the successive reaction because the high-temperature parallel decompositions were effectively inhibited. The thermal behavior changed dramatically by introducing water vapor in the atmosphere and the thermal process was quite different from that in dry gas atmosphere. Zinc oxide (ZnO) was formed only in a humidity-controlled atmosphere, and could be easily synthesized at temperatures below 300 °C. XRD–DSC equipped with a humidity generator revealed directly the crystalline change from Zn(CH3CO2)2 to ZnO. A detailed thermal process of Zn(CH3CO2)2·2H2O and the effect of water vapor are discussed.  相似文献   

3.
Simultaneous thermogravimetry–differential thermal analysis (TG–DTA) and gas and liquid chromatography with mass spectrometry detection have been used to study the kinetics and decomposition of 2-hydroxybenzoic acid, 2-carboxyphenyl ester, commercially known as salsalate. Samples of salsalate were heated in the TG–DTA apparatus in an inert atmosphere (100 ml min−1 nitrogen) in the temperature range 30–500 °C. The data indicated that the decomposition of salsalate is a two-stage process. The first decomposition stage (150–250 °C) had a best fit with second-order kinetics with Ea=191–198 kJ/mol. The second decomposition stage (300–400 °C) is described as a zero-order process with Ea=72–80 kJ/mol. The products of the decomposition were investigated in two ways:
(a)Salsalate was heated in a gas chromatograph at various isothermal temperatures in the range 150–280 °C, and the exit gas stream analyzed by mass spectrometry (GC–MS). This approach suggested that salsalate decomposes with the formation of salicylic acid, phenol, phenyl salicylate, and cyclic oligomers of salicylic acid di- and tri-salicylides.
(b)One gram samples of salsalate were heated in a vessel under nitrogen to 150 °C, and the residues were analyzed by liquid chromatography–mass spectrometry (LC–MS). The major compound detected was a linear tetrameric salicylate ester.
  相似文献   

4.
In the present study, the kinetics of the thermal decomposition of magnesium hydroxide is investigated, using isothermal methods of kinetic analysis. For this purpose, experiments in thermogravimetric analyser were carried out in standard values of temperature (350°, 400°, 450° and 500°C) which resulted in weight loss percent as a function of time. The data were further modified to give fraction reacted ‘' versus time to be tested in various forms of ‘' functions. In order to determine the mechanism of the magnesium hydroxide decomposition and the form of the conversion function which governs the dehydroxylation of Mg(OH)2, four different methods of isothermal kinetic analysis were used. Applying each of these methods to the data, it was concluded that the nucleation mechanism predominates the Mg(OH)2, decomposition for all values of temperature tested; at 350°C the kinetic model which represents the experimental data is that of reaction at phase boundaries (random nucleation), F1: ln(1−)=kt) while for the higher temperatures 400°, 450° and 500°C the kinetic equation of nucleation and development in two dimensions, A2: [−ln (1−)]1/2=kt was found to fit better the experimental results. The activation energy was evaluated applying two alternative methods; the Arrhenius plot, using maximum rates of reaction, from which the activation energy was evaluated to be 20.54 kcal/mol. An alternative method based on plots of ln t versus 1/T corresponding to the same value of ‘' gave values of 10.72, 13.82 and 16.31 kcal/mol for ‘' values of 0.25, 0.50 and 0.75, respectively.  相似文献   

5.
The mixed metal oxalate precursors, calcium(II)bis(oxalato)cobaltate(II)hydrate (COC), strontium(II)bis(oxalato)cobaltate(II)pentahydrate (SOC) and barium(II)bis(oxalato)cobaltate(II)octahydrate (BOC) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR spectral and X-ray powder diffraction studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound COC decomposed mainly to CaC2O4 and Co3O4 at 340 °C, and a mixture of CaCO3 and Co3O4 identified at 510 °C. A mixture of CaCO3 and Ca3Co2O6 along with the oxides and carbides of both the cobalt and calcium were attributed at 1000 °C as end products. DSC study in nitrogen ascertained the formation of a mixture of CaO and CoO along with a trace of carbon at 550 °C. The mixture species, SrC2O4, CoC2O4 and Co3O4 were generated at 255 °C in case of SOC in air, which ultimately changed to CoSrO3, SrCO3 and oxides of strontium and cobalt at 1000 °C. The several mixture species also generated as intermediate at 332 and 532 °C. The DSC study in nitrogen indicated the formation of CoSrOx (0.5 < x < 1) as end product. In case of BOC in air, a mixture of BaCoO2, BaO, CoO and carbides are identified as end product at 1000 °C through the generation of several intermediate species at 350 and 530 °C. A mixture of BaO and CoO is identified as end product in DSC study in nitrogen. The kinetic parameters have been evaluated for all the dehydration and decomposition steps of all the three compounds using four non-mechanistic equations. Using seven mechanistic equations, the kind of dominance of kinetic control mechanism of the dehydration and decomposition steps are also inferred. The kinetic parameters, ΔH and ΔS of all the steps are explored from the DSC studies. Some of the decomposition products are identified by IR and X-ray powder diffraction studies.  相似文献   

6.
Zinc glutarate (ZnGA) synthesized from zinc oxide and glutarate acid was dispersed on the surface of acid-treated montmorillonite (MMT) in quinoline to prepare ZnGA-MMT catalyst. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) measurements indicated that the ZnGA on the surface of acid-treated MMT had the same crystalline structure as pure ZnGA. Copolymerization between CO2 and propylene oxide (PO) was carried out under optimized reaction conditions using ZnGA-MMT catalyst, consequently giving poly(propylene carbonate) (PPC) with high molecular weight in a very high yield (115.2 g polymer per gram of ZnGA). The obtained PPCs were investigated using 13C NMR and FTIR spectra, showing a completely alternating structure. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) examinations showed the PPCs with a high transition temperature of 38 °C and a very high decomposition temperature (>250 °C) due to the presence of MMT residual in polymer.  相似文献   

7.
Differential scanning calorimetry (DSC) was applied to analyze thermal decomposition of methyl ethyl ketone peroxide (MEKPO). Thermokinetic parameters and thermal stability were evaluated. MEKPO decomposes in at least three exothermic decomposition reactions and begins to decompose at 30–32 °C. The total heat of decomposition is 1.26 ± 0.03 kJ g−1. Thermal decomposition of MEKPO can be described by a model of two independent reactions: the first is decomposition of a less stable isomer of MEKPO, followed by decomposition of the main isomer, after which an exothermic reaction of the reaction products with the solvent, dimethyl phthalate. The results can be applied for emergency relief system design and for emergency rescue strategies during an upset or accident.  相似文献   

8.
The transformation of ethanol on Fe ion-exchanged mordenite was compared in the temperature range of 200–400 °C for samples prepared in the solution and solid states. Ethane and methane were found as rather major products, compared to acetaldehyde and acetone. Diethyl ether was also detected as a dehydration product. The conversion was found to increase monotonically (to 96%) with increasing the Fe content (to 100%) and reaction temperature to 400 °C. The selectivity towards acetaldehyde and acetone was found maximum at the temperature 300 °C. Decrease in the catalyst Brönsted acidity due to ion-exchange in solution caused a marked increase in the selectivity toward acetaldehyde at 300 °C. At variance, Fe ion-exchanged in the solid state resulted in a higher Brönsted acidity catalyst of higher selectivity to acetone. The solid state exchanged catalyst formed more coke at 400 °C. The higher zeolite acidity catalyzes the ethane propagation into the coke precursors. The extraordinary formation of ethane as a dominant transformation product (in the absence of H2 gas supply) is explained mainly to the O-abstracting affinity of the Fe3+ ion. Methane may be formed as a result of decomposition reaction at high temperatures. Mössbauer and XRD were applied for characterizing different Fe species involved as active sites in the reaction. Coke deposited on the catalysts was measured by TGA. Other helpful information was obtained from BET of N2-adsorption and FT–IR of NH3-adsorption. Fair correlation between the active sites responsible for formation of the various products and the zeolite acidity is discussed along with a possible role for the surface area and pore structure in the reaction activity and selectivity.  相似文献   

9.
Thermal events encountered throughout the heat treatment of praseodymium acetate, Pr(CH3COO)3·H2O, were studied in nitrogen and air atmospheres. The samples calcined at the 300–700 °C temperature range were characterized using XRD, IR and N2 adsorption. Moreover, in situ electrical conductivity was employed to follow up the formation of the different decomposition intermediates. The results indicated that the anhydrous salt decomposes to the final product, PrO1.833, through the formation of the following intermediates: Pr(OH)(CH3COO)2, PrO(CH3COO) and Pr2O2(CO3). PrO1.833 formed at 500, 600, and 700 °C possesses a surface area of 17, 16 and 10 m2/g and crystallites size of 14, 17 and 30 nm, respectively.  相似文献   

10.
The effects of calcination temperature, molar ratio and the doping by CeO2 on the solid–solid interactions, surface and catalytic properties of Mn/Mg mixed oxide system have been studied by XRD, nitrogen adsorption at −196 °C and the catalytic decomposition of hydrogen peroxide at 20, 30, and 40 °C.

The results revealed that the manganese oxides interacted with magnesium oxide to yield well crystallized magnesium manganates at temperatures starting from 600 °C, this reaction found to be affected by the molar ratio of the reacted oxides present and also by the dopant content. However, the treatment of the Mn/Mg mixed oxide system with increasing amounts of manganese and cerium oxides followed by calcination at 400–800 °C brought about an increase in the catalytic activity of the resulting solids, whilst the opposite effect was observed in the surface area of the investigated solids. These treatments resulted in an increase in the particle size of MgO and a decrease in both the activation energy of sintering of the investigated system and that necessary for hydrogen peroxide decomposition reaction.  相似文献   


11.
The investigation of different zinc oxide samples by means of thermogravimetry and infrared spectroscopy has shown that the surface of the samples is covered by an approximately monoatomic layer of hydroxide groups. Furthermore, varying amounts of carbonate groups are found which are due to the presence of zinc hydroxide carbonate II [Zn5(OH)6(CO3)2]. Below relative water vapour pressures of p/p0 = 0.2 (25°C), two hydrogen bridges connect one physisorbed water molecule with two chemisorbed surface hydroxide groups. In addition, about the same amount of water is physically adsorbed between vapour pressures of p/p0 0.2 and 0.8. At still higher relative humidity, a multimolecular layer is built up which reaches a thickness of about 200 water molecules at p/p0 = 1.0. All samples show in the v-OH region of the IR. spectrum a broad absorption with four bands, A, B, C, and D. The position of the bands and the change of their intensities when rising the temperature of the samples up to 600°C indicate that both bands of longer wave lengths, C and D, arise from physically adsorbed water molecules, while the bands A and B are due to hydroxide groups located on the crystallographic faces (0001) and (0001 ), respectively.  相似文献   

12.
Aluminum, iron and zinc containing MCM-41 molecular sieves were prepared by the hydrothermal method. The catalyst was characterized by the XRD, BET (surface area), FT–IR and 29Si, 27Al MAS–NMR techniques. The catalytic activity of these molecular sieves was tested with esterification reaction used with phthalic anhydride (PAH) and methanol (MeOH) in the autoclave at 135 °C, 150 °C and 175 °C. Conversion increases with an increase in temperature and mole ratio. The activity of these catalysts followed the order: Al-MCM-41 (112) > Fe-MCM-41 (115) > Al-MCM-41 (70) > Al-MCM-41 (52) > Fe-MCM-41 (61) > Al, Zn-MCM-41 (104) > Al-MCM-41 (30). The reaction yielded both monomethyl phthalate (MMP) and dimethyl phthalate (DMP). The nature of the catalyst sites has been proposed using with water as an impurity. The selectivity of the dimethyl phthalate increases with increase in temperature and mole ratio. The weight of the catalyst was optimized at 0.07 g. The hydrophilic and hydrophobic nature of the catalyst has been explained by the influence of water and the external surface acidity also facilitates the reaction and this has been confirmed by the supporting reaction.  相似文献   

13.
A pinhole-free palladium membrane with a thickness of 3 μm has been prepared on the surface of a porous sintered stainless steel tube coated with a thin silver layer as a diffusion barrier. Filling of aluminum hydroxide gel in the surface pores of the tube is effective in preventing defect formation during electroless plating of the palladium layer, while the volume of the hydroxide beneath the membrane decreases greatly upon thermal treatment up to 500 °C. The hydrogen flux at 400–500 °C is reasonably proportional to the pressure difference between the two sides of the membrane. Addition of a 2 μm Pd0.8Ag0.2 alloy layer on the membrane by electroplating does not greatly decrease the hydrogen permeability.  相似文献   

14.
The detailed thermal characterization of Pd/TiO2–Al2O3 catalysts under oxygen and hydrogen atmosphere was conducted by means of thermal gravimetric analysis/differential scanning calorimetry (TG/DSC), temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD). A simultaneous TG/DSC measurement revealed that the heat evolved during oxygen adsorption at 25 °C varied slightly with the supports and had a higher value for the smaller palladium crystallite. Hydrogen chemisorption and BET measurements revealed that the coating of Pd/Al2O3 catalysts with titania modified the support character to achieve a high dispersion of palladium. TPR and TPD characterizations of oxidized samples further demonstrated that the coating of Pd/Al2O3 catalysts with titania promoted the reduction and decomposition of PdO into palladium.  相似文献   

15.
This research aimed to reduce the variability on the data obtained from differential scanning calorimetric (DSC) analysis of the isothermal crystallization kinetics of cocoa butter.

To enable transformation of the DSC crystallization peak to a sigmoid crystallization curve, the DSC peak area has to be integrated. Usually, the start and end points of the crystallization peak are determined visually. The result of this visual determination appeared to be very much dependent on the operator, but also differed considerably when the same operator performed the integration several times. By proposing an objective calculation algorithm to determine the start and end points of integration, the variability caused by the operator during the integration procedure could be eliminated. Furthermore, sample preparation and the DSC heating protocol to melt the sample prior to crystallization were studied. Three heating protocols (65 °C for 15 min, 65 °C for 30 min and 80 °C for 15 min) were compared and it was shown that holding at 65 °C for 15 min was sufficient to eliminate any influence of sample history. Two different sample preparation procedures were compared and it appeared that a change in sample preparation procedure had a significant influence on the measured crystallization process. It is thus important to keep this method constant to eliminate the variability caused by it.  相似文献   


16.
Pd-based sulfated zirconia catalysts have been prepared through a single step (one-pot) sol–gel preparation technique, in which both sulfate and Pd precursors were dissolved in an organic solution before the gelation step. Observation of the calcination procedure through TGA/DSC and mass spectrometry revealed that the addition of increasing amounts of Pd resulted in the evolution of organic precursor species at lower temperatures. In situ XRD experiments showed that tetragonal zirconia is formed at lower temperatures and larger zirconia crystallites are formed when Pd is added to the gel. Although tetragonal zirconia was the only phase observed through XRD, Raman spectra of samples calcined at 700 °C showed the presence of both the tetragonal and the monoclinic phase, indicating a surface phase transition. DRIFTS experiments showed NO species adsorbed on Pd2+ cations. Pd/SZ catalysts prepared through this single step method were active for the reduction of NO2 with CH4 under lean conditions. Calcination temperature had a significant effect on this activity, with samples calcined at 700 °C being much more active than those calcined at 600 °C, despite the observed transition to the monoclinic phase. This activity may be linked to observed changes in the surface sulfate species at higher calcination temperatures.  相似文献   

17.
Guo Z  Du F  Li G  Cui Z 《Inorganic chemistry》2006,45(10):4167-4169
Single-crystal cerium hydroxide carbonate (Ce(OH)CO3) triangular microplates with the hexagonal phase have been successfully synthesized by a hydrothermal method at 150 degrees C using cerium nitrate (Ce(NO3)3.6H2O) as the cerium source, aqueous carbamide as both an alkaline and carbon source, and cetyltrimethylammonium bromide (CTAB) as a surfactant. Single-crystal ceria (CeO2) triangular microplates have been fabricated by a thermal decomposition-oxidation process at 650 degrees C for 7 h using single-crystal Ce(OH)CO3 microplates as the precursor. The shape of the Ce(OH)CO3 microplate was sustained after thermal decomposition-oxidation to CeO2. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetric analysis (DSC), and thermogravimetric analysis (TG).  相似文献   

18.
Glass transition measured by DMTA from the change in slope in storage modulus was 55 °C, which was 10.5 °C lower than the value measured by tan δ peak. Initial glass transition measured by DSC, increased exponentially and reached a constant value of 55 °C at or higher heating rate of 30 °C/min. Transition temperature, measured by MDSC, remained constant up to heating rate 15 °C/min and then decreased. The glass transition values determined from reversible heat flow was 60 °C. The break in diffusivity and density (i.e. volume) was observed at 50 °C below the glass transition temperature measured by thermal and mechanical methods.  相似文献   

19.
Fourier-transform infrared (FTIR) spectroscopy has been applied in combination with wide-angle X-ray diffraction and measurements of strength, fluidity, yellowness, birefringence, and moisture regain to detect microstructural changes in lyocell fibres, a regenerated cellulose fibre, subjected to direct heat and annealing treatments. TMA, and SEM were used to show the effect of direct heat and annealing on lyocell fibres. The FTIR spectroscopy results show that a decrease in intermolecular hydrogen bonding occurs at 70 and 80 °C for annealed and directly heated samples, respectively. The results demonstrate increase of the intensity of O–H stretching vibrations, this associated with hydrogen bonds reforming around 130 °C. Lyocell fibres shrink with direct heating in the temperature range 130–160 °C. The crystallinity decreases gradually with increasing temperature. There is no significant change in colour of the samples annealed up to 150 °C. A continuous increase in the fluidity occurs for the annealed samples in the range 150–230 °C. The tenacity and breaking extension of heated samples decrease with increasing temperature. The lower annealing temperatures cause no observable change in the smooth and void-free surface, but in the annealing temperature range 170–230 °C, substantial non-uniformity is apparent on the surface of the fibres.  相似文献   

20.
The complexes, M[M(C2O4)3xH2 O, where x=4 for M=Cr(III), x=2 for M=Sb(III) and x=9 for M=La(III) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR and electronic spectral data, conductivity measurement and powder X-ray diffraction (XRD) studies. The chromium(III)tris(oxalato)chromate(III)tetrahydrate (COT), Cr[Cr(C2 O4)3]·4H2O, released water in a stepwise fashion. Removal of the last trace of water was accompanied by a partial decomposition of the oxalate group. Thermal investigation using TG, DTG and DTA techniques in air produced Cr2O3 at 858°C through the intermediate formation of Cr2O3 and CrC2O4 at around 460°C. While DSC study in nitrogen up to 670°C produced a mixture of Cr2O3 and CrC2O4. In antimony(III)tris(oxalato)antimonate(III)dihydrate (AOD), Sb[Sb(C2O4)3]·3H2O the dehydration took place during the decomposition of precursor at 170–290°C and finally at ca. 610°C Sb2 O5 along with trace amounts of Sb2O4 were produced. Trace amount of Sb2O3 and Sb along with Sb2O is proposed as the end product at 670°C of AOD in nitrogen. The oxide La2O3 is formed at 838°C from the study with TG, DTG and DTA in air of lanthanum(III)tris(oxalato)lanthanum(III)nonahydrate (LON), La[La(C2O4)3]·9H2O. Intermediate dioxycarbonate, La2O2CO3 was generated at 526°C prior to its decomposition to lanthanum oxide in air; whereas in N2 the formation of La2(CO3)3 at 651°C was proposed. The thermal parameters have been evaluated for each step of the dehydration and decomposition of COT, AOD and LON using five non-mechanistic equations i.e. Flynn and Wall, Freeman and Carroll, Modified Freeman and Carroll, Coats–Redfern and MacCallum–Tanner equations. Kinetic parameters, such as, E*, ko, ΔH*, ΔS* etc. were also supplemented by DSC studies in nitrogen for all the three complexes. Some of the intermediate species have been identified by analytical and powder XRD studies. Tentative schemes has been proposed for the decomposition of all three compounds in air and nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号