首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The static and dynamic aspects of the Jahn-Teller (JT) interactions in the 3p(E') and 3d(E") Rydberg electronic states of H3 are analyzed theoretically. The static aspects are discussed based on recent ab initio quantum chemistry results, and the dynamic aspects are examined in terms of the vibronic spectra and nonradiative decay behavior of these states. The adiabatic potential-energy surfaces of these degenerate electronic states are derived from extensive ab initio calculations. The calculated adiabatic potential-energy surfaces are diabatized following our earlier study on this system in its 2p(E') ground electronic state. The nuclear dynamics on the resulting conically intersecting manifold of electronic states is studied by a time-dependent wave-packet approach. Calculations are performed both for the uncoupled and coupled state situations in order to understand the importance of nonadiabatic interactions due to the JT conical intersections in these excited Rydberg electronic states.  相似文献   

2.
The photodetachment spectroscopy of B3- anion is theoretically studied with the aid of a quantum dynamical approach. The theoretical results are compared with the available experimental photoelectron spectra of B3-. Both B3- and B3 possess D(3h) symmetry at the equilibrium configuration of their electronic ground state. Distortion of B3 along its degenerate vibrational mode nu2 splits the degeneracy of its excited C2E' electronic manifold and exhibits (E [symbol: see text] e)-Jahn-Teller (JT) activity. The components of the JT split potential energy surface form conical intersections, and they can also undergo pseudo-Jahn-Teller (PJT) crossings with the X2A1' electronic ground state of B3 via the degenerate nu2 vibrational mode. The impact of the JT and PJT interactions on the nuclear dynamics of B3 in its X2A1'-C2E' electronic states is examined here by establishing a diabatic model Hamiltonian. The parameters of the electronic part of this Hamiltonian are calculated by performing electronic structure calculations and the nuclear dynamics on it is simulated by solving quantum eigenvalue equation. The theoretical results are in good accord with the experimental data.  相似文献   

3.
An ab initio quantum dynamical study is performed here to examine the complex nuclear motion underlying the first two photoelectron bands of trifluoroacetonitrile. The highly overlapping structures of the latter are found to originate from transitions to the five lowest electronic states (viz., X(2)E, A(2)A1, B(2)A2, C(2)A1, and D(2)E) of the trifluoroacetonitrile radical cation. The Jahn-Teller (JT) instability of the doubly degenerate X and, D and their pseudo-Jahn-Teller (PJT) interactions with the nondegenerate A, B, and C electronic states along the degenerate vibrational modes lead to multiple multidimensional conical intersections and complex nuclear trajectories through them. It is found that the JT splitting is very weak in the X and relatively stronger in the D state. However, the PJT couplings play the pivotal role in the detailed shape of the vibronic bands of the radical cation. Ultrafast nonradiative decay of electronically excited radical cation has been examined. The findings of this paper are compared with the experimental data and are also discussed in relation to those observed for the methyl cyanide radical cation.  相似文献   

4.
Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF(3), CrF(3), and NiF(3), which possess spatially doubly degenerate excited states ((M)E) of even spin multiplicities (M = 2 or 4). The ground states of TiF(3), CrF(3), and NiF(3) are nondegenerate and exhibit minima of D(3h) symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF(3) and CrF(3) are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF(3) is only partially quenched by JT coupling.  相似文献   

5.
The photoelectron spectrum of F2O pertaining to ionizations to the ground (X2B1) and low-lying excited electronic states (A2B2, B2A1, and C2A2) of F2O+ is investigated theoretically. The near equilibrium potential energy surfaces of the ground electronic state (X2B1) of F2O and the mentioned ground and excited electronic states of F2O+ reported by Wang et al. ( J. Chem. Phys. 2001, 114, 10682) for the C2v configuration are extended for the Cs geometry assuming a harmonic vibration along the asymmetric stretching mode. The vibronic interactions between the A2B2 and B2A1 electronic states of F2O+ are treated within a linear coupling approach, and the strength of the vibronic coupling parameter is calculated by an ab initio method. The nuclear dynamics is simulated by both time-independent quantum mechanical and time-dependent wave packet approaches. Although the first photoelectron band exhibits resolved vibrational progression along the symmetric stretching mode, the second one is highly overlapping. The latter is attributed to the nonadiabatic interactions among the energetically close A2B2, B2A1, and C2A2 electronic states of F2O+. The theoretical findings are in good accord with the available experimental results.  相似文献   

6.
Laser-induced fluorescence (LIF) and laser-excited dispersed fluorescence (LEDF) spectra of the cycloheptatrienyl (tropyl) radical C7H7 have been observed under supersonic jet-cooling conditions. Assignment of the LIF excitation spectrum yields detailed information about the A-state vibronic structure. The LEDF emission was collected by pumping different vibronic bands of the A 2E"3<--X 2E"2 electronic spectrum. Analysis of the LEDF spectra yields valuable information about the vibronic levels of the X 2E"2 state. The X- and A-state vibronic structures characterize the Jahn-Teller distortion of the respective potential energy surfaces. A thorough analysis reveals observable Jahn-Teller activity in three of the four e'3 modes for the X 2E"2 state and two of the three e'1 modes for the A 2E"3 state and provides values for their deperturbed vibrational frequencies as well as linear Jahn-Teller coupling constants. The molecular parameters characterizing the Jahn-Teller interaction in the X and A states of C7H7 are compared to theoretical results and to those previously obtained for C5H5 and C6H6+.  相似文献   

7.
We present an ab initio study of the thioketenyl (HCCS) radical in its degenerate X(2)Π electronic ground state. All rotational and vibrational degrees of freedom are taken into account including the electronic orbital and spin angular momenta. The structure of the rovibronic levels and the nature of the corresponding wave functions show resonances even at very low energies due to strong couplings between the bending, rotation, and spin terms in the Hamiltonian. Assignments from the dominant contributions of the eigenvectors are discussed in parallel with previously published data. The rotational structures for the first excited vibronic states are computed as well as transition intensities for the fundamental one.  相似文献   

8.
We report a theoretical account on the static and dynamic aspects of the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) interactions in the ground and first excited electronic states of the ethane radical cation. The findings are compared with the experimental photoionization spectrum of ethane. The present theoretical approach is based on a model diabatic Hamiltonian and with the parameters derived from ab initio calculations. The optimized geometry of ethane in its electronic ground state (1A1g) revealed an equilibrium staggered conformation belonging to the D3d symmetry point group. At the vertical configuration, the ethane radical cation belongs to this symmetry point group. The ground and low-lying electronic states of this radical cation are of 2Eg, 2A1g, 2Eu, and 2A2u symmetries. Elementary symmetry selection rule suggests that the degenerate electronic states of the radical cation are prone to the JT distortion when perturbed along the degenerate vibrational modes of eg symmetry. The 2A1g state is estimated to be approximately 0.345 eV above the 2Eg state and approximately 2.405 eV below the 2Eu state at the vertical configuration. The symmetry selection rule also suggests PJT crossings of the 2A1g and the 2Eg electronic states of the radical cation along the vibrational modes of eg symmetry and such crossings appear to be energetically favorable also. The irregular vibrational progressions, with numerous shoulders and small peaks, observed below 12.55 eV in the experimental recording are manifestations of the dynamic (E x e)-JT effect. Our findings revealed that the PJT activity of the degenerate vibrational modes is particularly strong in the 2Eg-2A1g electronic manifold which leads to a broad and diffuse structure of the observed photoelectron band.  相似文献   

9.
A. Borowski  O. Kühn   《Chemical physics》2008,347(1-3):523-530
Quantum dynamics simulations are performed for a diatomics-in-molecules based model of Br2 in solid Ar which incorporates four nuclear degrees of freedom and four electronic states. The nuclear motions comprise two large amplitude coordinates describing the Br2 bond distance and an effective symmetry-preserving matrix mode. Two symmetry-lowering harmonic modes are added in the spirit of linear vibronic coupling theory. Initiating the dynamics on the B state by means of an ultrafast laser pulse, nonadiabatic transitions to the two degenerate C states are monitored and the effect of vibrational preexcitation in the electronic ground state is investigated.  相似文献   

10.
S. Ghanta  S. Mahapatra   《Chemical physics》2008,347(1-3):97-109
Static and dynamic aspects of the Jahn–Teller (JT) and pseudo-Jahn–Teller (PJT) interactions between the ground and first excited electronic states of the methyl cyanide radical cation are theoretically investigated here. The latter involves construction of a theoretical model by ab initio computation of electronic potential energy surfaces and their coupling surfaces and simulation of the nuclear dynamics employing time-independent and time-dependent quantum mechanical methods. The present system represents yet another example belonging to the (E + A)  e JT–PJT family, with common JT and PJT active degenerate (e) vibrational modes. The theoretical results are found to be in very good accord with the recent experimental data revealing that the JT interactions are particularly weak in the ground electronic manifold of methyl cyanide radical cation, On the other hand, the PJT interactions of this ground electronic manifold with the first excited electronic state of the radical cation are stronger which cause an increase of the spectral line density. The effect of deuteration on the JT–PJT dynamics of the methyl cyanide radical cation is also discussed.  相似文献   

11.
The influence of spin—orbit and vibronic interactions upon the chiroptical properties of nearly degenerate dd transitions in metal complexes of pseudo-tetragonal symmetry is investigated. A model system is considered in which three nearly degenerate dd excited states are coupled via both spinorbit and vibronic interactions. Vibronic interactions among the three nearly degenerate dd electronic states are assumed to arise from a pseudo-Jahn—Teller (PJT) mechanism involving three different vibrational modes (each nontotally symmetric in the point group of the undistorted model system).A vibronic hamiltonian is constructed (for the excited states of the model system) which includes linear coupling terms in each of the three PJT-active vibrational modes as well as a linear coupling term in one totally symmetric mode of the system and a spin—orbit interaction term. Wavefunctions and eigenvalues for the spin—orbit/vibronic perturbed excited states. of the model system are obtained by diagonalizing this hamiltonian in a basis constructed of uncoupled vibrational and electronic (orbital and spin) wavefunctions.Rotatory strengths associated with transitions to vibronic levels of the perturbed system are calculated and “rotatory strength spectra” are computed assuming gaussian shaped vibronic spectral components. Calculations are carried out for a number of vibronic and spin—orbit coupling parameters and for various splitting energies between the interacting electronic states. The calculated results suggest that chiroptical spectra associated with transitions to a set of nearly degenerate dd excited states of a chiral transition metal complex cannot be interpreted directly without some consideration of the effects introduced by spin—orbit and vibronic perturbations. These perturbations can lead to substantial alterations in the sign patterns and intensity distributions of rotatory strength among vibronic levels derived from the interacting electronic states and it is generally not valid to assign specific features in the observed circular dichroism spectra to transitions between states with well-defined electronic (orbital and spin) identities.Our theoretical model is conservative with respect to the total (or net) rotatory strength associated with transitions to levels derived from the three interacting electronic states; the vibronic and spin—orbit coupling operators are operative only within this set of states. That is, the total (or net) rotatory strength associated with these transitions remains invariant to the vibronic and spin—orbit coupling parameters of the model.  相似文献   

12.
The influence of vibronic interactions on the chiroptical spectra associated with a threesome of nearly degenerate electronic excited states in a dissymmetric molecular system is examined on a formal theoretical model. The model considers two vibrational modes to be effective in promoting pseudo Jahn-Teller (PJT) type interactions between the three closely spaced electronic excited states. Formal expressions are developed for the rotatory strengths of individual vibronic levels derived from the coupled electronic states. Two mode (vibrational)-three state (electronic) vibronic Hamiltonians are constructed (basis set size, 63–108, depending upon interaction parameters used) and diagonalized for a large number of different parameter sets representative of various vibronic coupling strengths, electronic energy level spacings, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. Diagonalization of these vibronic Hamiltonians yields vibronic wave functions and energies which are then used to calculate rotatory strength spectra for the model system. The calculated results demonstrate the profound influence which vibronic interactions of the PJT type may have on the sign patterns and intensity distributions within the rotatory strength spectrum associated with a set of nearly degenerate electronic states. The implication of these results for the interpretation of circular dichroism spectra of chiral transition metal complexes with pseudo tetragonal symmetry are discussed.  相似文献   

13.
NO2的光解研究不仅在大气化学等领域有着重要意义,而且在单分子解离模型的建立等分子反应动力学理论研究上也有着重要的价值.因此,它一直被不同的实验方法进行着深入的研究.NO2的解离极限波长是398nm.由干室温下NO2振、转动能的能量贡献,在长干解高限的404.7。仍有多达3  相似文献   

14.
The photon-excited NO2 at 308 nm has been investigated by Time-Resolved FTIR spectroscopy. The IR fluorescence from highly excited NO2(X2 A1) in ν1 vibrational mode has been observed. These excited states are resulted from the strong vibronic mixing of electronic excited A2 B2/B2 B1 states with the ground X2 A1 state. It is considered that symmetric stretching ν1 mode is reserved from the photolysis because its vibrational style is unsuitable for dissociation.  相似文献   

15.
Electronic coherence dynamics in trans-polyacetylene oligomers are considered by explicitly computing the time dependent molecular polarization from the coupled dynamics of electronic and vibrational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers are described by the Su-Schrieffer-Heeger Hamiltonian and the effect of decoherence is incorporated by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by sampling the Wigner distribution of the nuclear degrees of freedom. The electronic coherence of superpositions between the ground and excited and between pairs of excited states is examined for chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers the loss of coherence occurs in tens of femtoseconds. This time scale is determined by the decay of population into other electronic states through vibronic interactions, and is relatively insensitive to the type and class of superposition considered. By contrast, for smaller oligomers the decoherence time scale depends strongly on the initially selected superposition, with superpositions that can decay as fast as 50 fs and as slow as 250 fs. The long-lived superpositions are such that little population is transferred to other electronic states and for which the vibronic dynamics is relatively harmonic.  相似文献   

16.
The group-V tetrahedral cluster cations P(4)(+), As(4)(+), Sb(4)(+), and Bi(4)(+) are known to exhibit exceptionally strong Jahn-Teller (JT) effects of electrostatic origin in their (2)E ground states and (2)T(2) excited states. It has been predicted that there exist, in addition, JT couplings of relativistic origin (arising from the spin-orbit (SO) operator) in (2)E and (2)T(2) states of tetrahedral systems, which should become relevant for the heavier elements. In the present work, the JT and SO couplings in the group-V tetramer cations have been analyzed with ab initio relativistic electronic structure calculations. The vibronic line spectra and the band shapes of the photoelectron spectra were simulated with time-dependent quantum wave-packet methods. The results provide insight into the interplay of electrostatic and relativistic JT couplings and SO splittings in the complex photoelectron spectra of these systems.  相似文献   

17.
Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanced solvent bands exhibit similar peaks to those of the solute bands in the wavenumber region of 21,700-25,000 cm(-1) (10,850-12,500 cm(-1) in the hyper-Raman exciting wavenumber), where the solute all-trans-β-carotene shows a strong absorption assigned to the 1A(g) → 1B(u) transition. This fact indicates that the solvent hyper-Raman bands gain their intensities through resonances with the electronic states of the solute. The observed excitation profiles are quantitatively analyzed and are successfully accounted for by an extended vibronic theory of resonance hyper-Raman scattering that incorporates the vibronic coupling within the excited electronic manifold of all-trans-β-carotene through the vibrational motions of cyclohexane. It is shown that the major resonance arises from the B-term (vibronic) coupling between the first excited vibrational level (v = 1) of the 1B(u) state and the ground vibrational level (v = 0) of a nearby A(g) state through ungerade vibrational modes of both the solute and the solvent molecules. The inversion symmetry of the solute all-trans-β-carotene is preserved, suggesting the weak perturbative nature of the solute-solvent interaction in the molecular near-field effect. The present study introduces a new concept, "intermolecular vibronic coupling," which may provide an experimentally accessible∕theoretically tractable model for understanding weak solute-solvent interactions in liquid.  相似文献   

18.
The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.  相似文献   

19.
We compare the 3(4)A(1) and 4(4)B(2) states of homonuclear and heteronuclear alkali trimers formed of potassium and rubidium. The Multireference Rayleigh Schr?dinger Perturbation Theory of second order is applied to obtain the corresponding adiabatic potential energy surfaces. In the case of homonuclear trimers these pairs of states correspond to the two branches of the E?e Jahn-Teller distorted 2(4)E' state. For heteronuclear trimers, the vibrational modes Q(x) and Q(y) are no longer degenerate, but the two electronic states still show a conical intersection at obtuse (KRb(2)) or acute (K(2)Rb) isosceles geometries. Spectroscopic consequences of this situation are discussed, vibronic spectra are predicted and compared to laser-induced fluorescence spectra obtained in helium droplet isolation spectroscopy experiments of our group.  相似文献   

20.
The laser-excited, jet-cooled A 2E"-X 2E' electronic spectrum of the silver trimer yields detailed information about its A- and X-state vibronic structure. Following extensive parameter fitting, the absorption and emission spectra are simulated and the bands are assigned. The Jahn-Teller analysis includes both linear and quadratic coupling terms, considered simultaneously with spin-orbit coupling. The spin-orbit splitting is shown to be largely quenched in both the A and X electronic states. The Jahn-Teller analysis of the A and X vibronic structures reveals the distortion of their corresponding potential energy surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号