首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identity of neighboring amino acids has little influence on the dissociation of multiply protonated proteins by electron capture dissociation. As exceptions, no cleavage occurs on the N-terminal side of Pro, and little on either side of Cys, whereas the C-terminal side of Trp is heavily favored. The neighboring amino acids have a far greater effect on energetic dissociation, making the combined methods promising for the de novo sequencing of proteins.  相似文献   

2.
3.
We report electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) of doubly protonated and protonated/alkali metal ionized oligodeoxynucleotides. Mass spectra following ECD of the homodeoxynucleotides polydC, polydG, and polydA contain w or d "sequence" ions. For polydC and polydA, the observed fragments are even-electron ions, whereas radical w/d ions are observed for polydG. Base loss is seen for polydG and polydA but is a minor fragmentation pathway in ECD of polydC. We also observe fragment ions corresponding to w/d plus water in the spectra of polydC and d(GCATGC). Although the structure of these ions is not clear, they are suggested to proceed through a pentavalent phosphorane intermediate. The major fragment in ECD of d(GCATGC) is a d ion. Radical a- or z-type fragment ions are observed in most cases. IRMPD primarily results in base loss, but backbone fragmentation is also observed. IRMPD provides more sequence information than ECD, but the spectra are more complex due to extensive base and water losses. It is proposed that the smaller degree of sequence coverage in ECD, with fragmentation mostly occurring close to the ends of the molecules, is a consequence of a mechanism in which the electron is captured at a P=O bond, resulting in a negatively charged phosphate group. Consequently, at least two protons (or alkali metal cations) must be present to observe a w or d fragment ion, a requirement that is less likely for small fragments.  相似文献   

4.
For small cyclic peptides, one electron capture by the [M + 2H](2+) ion generates numerous fragments corresponding to amino acid losses, side-chain losses, and losses of some low molecular weight species such as H(2)O, CH(3)(*), C(3)H(6), and (*)CONH(2). As predicted, the side-chain cleavages are amplified relative to linear peptides of similar size, but the amino acid losses were unexpected because they require that one electron capture cause more than one backbone cleavage, a phenomenon which necessitates further refinement or reinterpretation of current ECD mechanisms. A modified mechanism is postulated in which nonergodic electron capture fragmentation generates an alpha-carbon radical species that then propagates along the protein backbone. This radical migration initiates multiple free radical rearrangements, which cause both multiple backbone cleavages and additional side-chain cleavages.  相似文献   

5.
Mass spectrometry (MS) methods involving gas-phase fragmentation hold considerable promise for analyzing regioselective deuteration patterns of proteins following solution-phase amide hydrogen exchange (HX). However, the general viability of such an approach is questionable due to the possible occurrence of intramolecular hydrogen migration ("scrambling"), which tends to randomize or distort the spatial isotope distribution. Rand et al. (J. Am. Chem. Soc. 2008, 130, 1341-1349) have recently reported the application of electron capture dissociation (ECD) for measuring deuteration patterns of short peptides with very little scrambling by FT-MS. The current work shows that even much larger systems such as the 76-residue protein ubiquitin can be successfully analyzed by ECD following solution-phase HX. The resulting c and z. ion deuteration levels are in remarkable agreement with previous NMR data, demonstrating that the extent of scrambling and/or other gas-phase artifacts is negligible. These results open the door to future experiments on the folding, structure, and dynamics of proteins by HX/ECD-FT-MS.  相似文献   

6.
Electron capture dissociation of singly and multiply phosphorylated peptides   总被引:12,自引:0,他引:12  
Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) mass spectra of these species. ECD of multiply protonated phosphopeptide ions generated mainly c- and z(.)-type peptide fragment ion series. No loss of water, phosphate groups or phosphoric acid from intact phosphopeptide ions nor from the c and z(.) fragment ion products was observed in the ECD spectra. ECD enabled complete or near-complete amino acid sequencing of phosphopeptides for the assignment of up to four phosphorylation sites in peptides in the mass range 1400 to 3500 Da. Nano-scale Fe(III)-affinity chromatography combined with nano-electrospray FTMS/ECD facilitated phosphopeptide analysis and amino acid sequencing from crude proteolytic peptide mixtures.  相似文献   

7.
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD.  相似文献   

8.
We have studied the outcome of collisions between the hydrated nucleotide anion adenosine 5'-monophosphate (AMP) and sodium. Electron capture leads to hydrogen loss as well as water evaporation regardless of the initial number m of water molecules attached to the parent ion (m< or =16). The yield of dianions with microsecond lifetimes increases strongly with m, which is explained from dielectric screening of the two charges by the water nanodroplet. For comparison, collision induced dissociation results in water losses with no or very little damage of the AMP molecule itself.  相似文献   

9.
We have studied electron capture induced dissociation of a set of doubly protonated pentapeptides, all composed of one lysine (K) and either four glycine (G) or four alanine (A) residues, as a function of the sequence of these building blocks. Thereby the separation of the two charges, sequestered on the N-terminal amino group and the lysine side chain, is varied. The characteristic cleavage of N-C(α) bonds is observed for all peptides over the whole backbone length, with the charge carrying fragments always containing K. The resulting fragmentation patterns are very similar if G is replaced by A. In the case of [XKXXX+2H](2+) (X=A or G), a distinct feature is observed in the distribution of backbone cleavage fragments and the probability for ammonia loss is drastically reduced. This may be due to an isomer with an amide oxygen as protonation site giving rise to the observed increase in breakage at a specific site in the molecule. For the other peptides, a correlation with the distance between amide oxygen and the charge at the lysine side chain has been found. This may be an indication that it is only the contribution from this site to the charge stabilization of the amide π(*) orbitals which determines relative fragment intensities. For comparison, complexes with two crown ether molecules have been studied as well. The crown ether provides a shielding of the charge and prevents the peptide from folding and internal hydrogen bonding, which leads to a more uniform fragmentation behavior.  相似文献   

10.
We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity. The correlation factor (R) exceeds 0.9 for 12 amino acids (Ile, Val, His, Asn, Asp, Glu, Gln, Ser, Thr, Gly, Cys, and Ala). The deviation of ECD PIA for seven outliers (Pro is not taken into consideration) is explained by their specific radical stabilization properties (Phe, Trp, Tyr, Met, and Leu) and amino acid basicity (Lys, Arg). Phosphorylation of Ser, Thr, and Tyr decreases the efficiency of ECD around phosphorylated residues, as expected. The systematic arrangement of amino acids reported here indicates a possible route toward development of a predictive model for quantitative electron capture/transfer dissociation tandem mass spectrometry, with possible applications in proteomics.  相似文献   

11.
Electron capture dissociation (ECD) of peptides and their fragments has now been extended to b ( n) ( 2+) ions, where it also produced far more structural information than collisional activation. Interestingly, b ( n) ( 2+) ions revealed abundant loss of CO from radical monocations and the presence of c ((n - 1)) ( +.) fragments. The CO loss from peptide radical cations is unusual and was attributed to neutralization of the -C identical with O(+) group in the acylium ion structure, supported by the observation of c ( (n - 1)) ( +.) ions that can only be formed from an open-chain ion. These characteristic features were most prominent for b ( 12)( 2+) ions of renin substrate and least prominent for b ( n) ( 2+) ions of substance P (n = 9,10). Totally, out of seven b ( n) ( 2+) ions studied, CO loss above 3% level was present in all spectra as well as c ( (n - 1))( +.) fragments of three species, suggesting that the acylium ion structure plays a significant role for at least some b ( 2+) ions. This is an unexpected result in view of the literature data for small, singly charged b ions, for which the protonated oxazolone structure is favoured in ab initio calculations. Apparently, more studies are required before extrapolating the small molecule results to large species. The CO loss in ECD can be used for distinguishing between b and y ions in the MS/MS spectrum of larger molecules.  相似文献   

12.
We have made use of classical dynamics trajectory simultions and ab initio electronic structure calculations to estimate the cross sections with which electrons are attached (in electron capture dissociation (ECD)) or transferred (in electron transfer dissociation (ETD)) to a model system that contained both an S-S bond that is cleaved and a -NH(3)(+) positively charged site. We used a Landau-Zener-Stueckelberg curve-crossing approximation to estimate the ETD rates for electron transfer from a CH(3)(-) anion to the -NH(3)(+) Rydberg orbital or the S-S sigma* orbital. We draw conclusions about ECD from our ETD results and from known experimental electron-attachment cross sections for cations and sigma-bonds. We predict the cross section for ETD at the positive site of our model compound to be an order of magnitude larger than that for transfer to the Coulomb-stabilized S-S bond site. We also predict that, in ECD, the cross section for electron capture at the positive site will be up to 3 orders of magnitude larger than that for capture at the S-S bond site. These results seem to suggest that attachment to such positive sites should dominate in producing S-S bond cleavage in our compound. However, we also note that cleavage induced by capture at the positive site will be diminished by an amount that is related to the distance from the positive site to the S-S bond. This dimunition can render cleavage through Coulomb-assisted S-S sigma* attachment competitive for our model compound. Implications for ECD and ETD of peptides and proteins in which SS or N-C(alpha) bonds are cleaved are also discussed, and we explain that such events are most likely susceptible to Coulomb-assisted attachment, because the S-S sigma* and C=O pi* orbitals are the lowest-lying antibonding orbitals in most peptides and proteins.  相似文献   

13.
The adverse influence of the radio frequency (RF) voltage on electrons has been the main obstacle for the implementation of electron capture dissociation (ECD) in three-dimensional quadrupole ion traps (3D QITs). Here we demonstrate that the use of axial magnetic field, together with the injection of low-energy (<5 eV) electrons, in the beginning of the positive RF semi-period achieves trapping of electrons for a period of time comparable with the semi-period duration. Importantly, the energy of the electrons remains low during most of the trapping period. With this technique, which we call "magnetized electrons, in-phase injection" (MEPhI), ECD and other ion-electron reactions have become possible in a 3D QIT. Initial ECD results, including single-scan data, were obtained with dications of Substance P. The observed secondary fragmentation of ECD fragments indicates that the trapped electrons are still somewhat hotter than desired.  相似文献   

14.
Successful electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applications to peptide and protein structural analysis have been enabled by constant progress in implementation of improved electron injection techniques. The rate of ECD product ion formation has been increased to match the liquid chromatography and capillary electrophoresis timescales, and ECD has been combined with infrared multiphoton dissociation in a single experimental configuration to provide simultaneous irradiation, fast switching between the two techniques, and good spatial overlap between ion, photon, and electron beams. Here we begin by describing advantages and disadvantages of the various existing electron injection techniques for ECD in FT-ICR MS. We next compare multiple-pass and single-pass ECD to provide better understanding of ECD efficiency at low and high negative cathode potentials. We introduce compressed hollow electron beam injection to optimize the overlap of ion, photon, and electron beams in the ICR ion trap. Finally, to overcome significant outgassing during operation of a powerful thermal cathode, we introduce nonthermal electron emitter-based electron injection. We describe the first results obtained with cold cathode ECD, and demonstrate a general way to obtain low-energy electrons in FT-ICR MS by use of multiple-pass ECD.  相似文献   

15.
Electron capture dissociation (ECD) of doubly protonated hyperbranched polyesteramide oligomers (1100-1900 Da) was examined and compared with the structural information obtained by low energy collisionally activated dissociation (CAD). Both the ester and amide bonds of the protonated species were cleaved easily upon ECD with the formation of odd electron (OE(.+)) or even electron (EE(+)) fragment ions. Several mechanistic schemes are proposed that describe the complex ECD fragmentation behavior of the multiply charged oligomers. In contrast to studies of biomolecules, the present results indicate that consecutive cleavages induced by intramolecular H-shifts are significant for ECD and of less importance for low energy CAD. The capture of an electron by the ionized species results in fragmentation associated with a redistribution of the excess internal energy over the products and the subsequent bond cleavage. Low energy, multiple collision CAD is found to be a more selective dissociation method than ECD in view of the observation that only amide bonds are cleaved for most of the hyperbranched polymers examined with CAD in this study. ECD appears not to provide complementary structural information compared to CAD in the study of hyperbranched polymers, even though a significantly more complex ECD fragmentation behavior is observed. ECD is shown to be of use for the structural characterization of large oligomers that may not dissociate upon low energy CAD. This is a direct result of the fact that ECD produces ionized hyperbranched oligomers with a relatively high internal energy.  相似文献   

16.
Hydrogen (1H/2H) exchange combined with mass spectrometry (HX-MS) has become a recognized method for the analysis of protein structural dynamics. Presently, the incorporated deuterons are typically localized by enzymatic cleavage of the labeled proteins and single residue resolution is normally only obtained for a few residues. Determination of site-specific deuterium levels by gas-phase fragmentation in tandem mass spectrometers would greatly increase the applicability of the HX-MS method. The biggest obstacle in achieving this goal is the intramolecular hydrogen migration (i.e., hydrogen scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited in the electrospray ion source by, e.g., high declustering potentials or during precursor ion selection (via sideband excitation) in the external linear quadrupole ion trap undergo nearly complete hydrogen (1H/2H) scrambling. Similarly, collision-induced dissociation (CID) in the external linear quadrupole ion trap results in complete or extensive hydrogen (1H/2H) scrambling. This precludes the use of CID as a method to obtain site-specific information from proteins that are labeled in solution-phase 1H/2H exchange experiments. In contrast, the deuteration levels of the c- and z-fragment ions generated from ECD closely mimic the known solution deuteration pattern of the selectively labeled peptides. This excellent correlation between the results obtained from gas phase and solution suggests that ECD holds great promise as a general method to obtain single residue resolution in proteins from solution 1H/2H exchange experiments.  相似文献   

17.
We have used electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry to characterize amino acid side chain losses observed during electron capture dissociation (ECD) of ten 7- to 14-mer peptides. Side-chain cleavages were observed for arginine, histidine, asparagine or glutamine, methionine, and lysine residues. All peptides containing an arginine, histidine, asparagine or glutamine showed the losses associated with that residue. Methionine side-chain loss was observed for doubly-protonated bombesin. Lysine side-chain loss was observed for triply-protonated dynorphin A fragment 1-13 but not for the doubly-protonated ion. The proximity of arginine to a methoxy C-terminal group significantly enhances the extent of side-chain fragmentation. Fragment ions associated with side-chain losses were comparable in abundance to those resulting from backbone cleavage in all cases. In the ECD spectrum of one peptide, the major product was due to fragmentation within an arginine side chain. Our results suggest that cleavages within side chains should be taken into account in analysis of ECD mass spectral data. Losses from arginine, histidine, and asparigine/glutamine can be used to ascertain their presence, as in the analysis of unknown peptides, particularly those with non-linear structures.  相似文献   

18.
Electron capture dissociation (ECD) has been demonstrated to be an effective fragmentation technique for characterizing the site and structure of the fatty acid modification in ghrelin, a 28-residue growth-hormone-releasing peptide that has an unusual ester-linked n-octanoyl (C8:0) modification at Ser-3. ECD cleaves 21 of 23 possible backbone amine bonds, with the product ions (c and z· ions) covering a greater amino acid sequence than those obtained by collisionally activated dissociation (CAD). Consistent with the ECD nonergodic mechanism, the ester-linked octanoyl group is retained on all backbone cleavage product ions, allowing for direct localization of this labile modification. In addition, ECD also induces the ester bond cleavage to cause the loss of octanoic acid from the ghrelin molecular ion; the elimination process is initiated by the capture of an electron at the protonated ester group, which is followed by the radical-site-initiated reaction known as -cleavage. The chemical composition of the attached fatty acid can be directly obtained from the accurate Fourier transform ion cyclotron resonance (FTICR) mass measurement of the ester bond cleavage product ions.  相似文献   

19.
Electron capture dissociation (ECD) of polypeptides has been demonstrated using a commercially available 3 Tesla Fourier transform ion cyclotron resonance (FTICR) instrument. A conventional rhenium filament, designed for high-energy electron impact ionisation, was used to effect ECD of substance P, bee venom melittin and bovine insulin, oxidised B chain. A retarding field analysis of the effective electron kinetic energy distribution entering the ICR cell suggests that one of the most important parameters governing ECD for this particular instrument is the need to employ low trapping plate voltages. This is shown to maximise the abundance of low-energy electrons. The demonstration of ECD at this relatively low magnetic field strength could offer the prospect of more routine ECD analysis for the wider research community, given the reduced cost of such magnets and (at least theoretically) the greater ease of electron/ion cloud overlap at lower field.  相似文献   

20.
Electron capture dissociation of the peptide Substance P is reported for the first time, with an unmodified, commercially available Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The fragmentation pattern is compared with that obtained with collisionally induced dissociation of the ions in the electrospray ion source, and note that electron capture dissociation gives a more easily interpreted spectrum, showing mainly C-fragments. With the exception of the proline residues, which require cleavage of two chemical bonds, we observe all C-fragmental we find the bias voltage of the electron gun not to be very critical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号