共查询到19条相似文献,搜索用时 62 毫秒
1.
针对传统D-S证据理论难以融合高度冲突证据的问题,并考虑到证据正常时Dempster规则具有优越的聚焦性能,提出了一种基于选择判据和贴近度的证据融合方法。把贴近度概念引入到D-S证据合成中,通过证据的一致性度量来计算证据的权重,从而实现了冲突证据的加权融合。同时提出了证据修正的选择判据,将证据分成冲突与非冲突两类,对冲突的证据进行修正后再进行合成,而非冲突证据可直接进行合成。通过实例验证表明,所提出的方法不但保持了Dempster规则优越的信息聚焦性能,而且较好的解决了冲突证据的合成问题。 相似文献
2.
3.
针对现有的网络安全态势预测方法正确性和合理性难以得到保证,同时不能有效应对不确定情况的问题,设计了一种基于最小二乘支持向量机(Least square support vector machine, LSSVM)和改进证据理论的网络安全态势预测方法。首先,将由多源传感器采集的历史标记数据作为样本数据,实现对LSSVM的训练,然后,将当前采集的数据输入LSSVM进行分类,并通过混淆矩阵获得数据对应每个类的概率,为了有效地对采集的数据进行进一步融合,将各类转换为证据,同时将数据相对每个类的概率作为证据的基本信度分配,采用改进的DS证据合成规则对各证据进行融合,实现对网络安全态势的预测,最后,设计了基于LSSVM和改进DS证据合成规则的网络安全状态预测算法。在MATLAB环境下进行实验,实验表明了文中方法能对网络的安全态势进行实时精确的预测,与其它方法相比,具有更高的预测精度,是一种可行的网络安全态势预测方法。 相似文献
4.
电力系统的异常数据会影响电力系统的安全稳定运行。传统的异常数据检测方法已无法实现对海量电力系统运行数据的有效识别与判断,对此,提出了一种策略融合的电网运行异常值检测方法,该方法结合了机器学习算法与统计学算法,通过机器学习快速确定异常数据出现的时间段,随后采用统计学算法对电网运行异常值进行有效判断。将提出的方法应用于包含了多种用电消费端的电网运行数据,并将实验结果与三种传统方法的实验结果进行了比较。实验结果表明,提出的策略融合异常值检测方法的F1-score高于其他三种方法,相比于其他三种方法具有显著性,可以快速且有效地识别电网运行异常数据。 相似文献
5.
为了降低WSN数据量和延长网络生命周期,设计了一种基于DS证据理论和压缩感知的WSN混合数据融合策略;首先,在分簇协议的基础上引入了基于DS证据理论和压缩感知的混合模型,然后,采用改进的DS对所有簇成员节点的基本信度分配函数进行加权处理,在簇头处采用加权和归一化的信度分配函数计算证据对各命题的支持程度,将支持程度较大的若干命题作为DS融合结果,在此基础上采用压缩感知方法通过构造测量矩阵对融合结果进行稀疏化表示,并在基站处对稀疏信号进行重构;仿真实验表明,文中方法能有效地实现数据融合,且和其他方法相比,具有重构误差较小和网络生命周期较长的优点,具有较大的优越性。 相似文献
6.
7.
双向多重检测一直是WSN节点异常检测的难点,结合人工免疫原理提出了基于环状检测器的WSN异常度双向多重检测方法,引入人工免疫原理,设计了环状检测器,利用环状检测器能够实现对异常信号的分级,并根据小波包提取信息的异常特征信号,结合设计的环状检测器进行检测,无需知道异常信号的参数和特点,只要有正常的信号样本就能对WSN节点的早期故障进行检测,实时预警;以美国Crossbow公司生产的内置震动传感器的WSN节点进行测试,测试结果表明,环状检测器在选择合适的内径和外径后,能够准确地对WSN节点的异常进行检测,检测准确率高达95%以上,比传统系统准确率提高了35%左右,满足了WSN系统对WSN节点准确检测的要求,有效地解决了传感网络节点异常双向检测的问题。 相似文献
8.
9.
拼接异常是光谱在红蓝两端拼接区域表现出的光谱连续性差的一种现象。在LAMOST的光谱处理中,仪器的稳定性、观测条件以及获得的响应函数等问题都是造成拼接异常的原因。光谱拼接是否正常对于光谱发布等后续工作的质量有重要影响。提出一种拼接异常光谱的自动检测方法,有效地提高了工作效率。该研究可以为LAMOST数据提供一个自动的标记,来评价拼接质量,也可以为用户提供一个使用数据时的选择。该方法首先将待测光谱进行流量归一化、去除钠线等预处理,并将其分为红蓝两端;然后对红蓝两端分别进行拟合;最后对两条拟合曲线,选取一系列等波长间隔的点,计算在这些点处的流量差值,得到所有流量差值的均值,标准差,并且计算两条曲线积分面积的差值;基于上述统计量,提出了一个判断光谱是否异常及其异常程度的评价函数。大量的实验证明,该方法具有良好的拼接异常光谱检测效果。 相似文献
10.
针对多传感器数据融合过程中,各传感器可靠度估计困难的问题和如何对各传感器测量数据进行融合,提出了一种基于模糊理论的多传感器数据融合方法并研究了它在测量中的应用过程。该方法首先利用容许函数计算各传感器测量数据间的一致性以剔除系统误差数据,然后将测量数据进行模糊化,最后用模糊贴近度获得多传感器测量的数据融合结果。该方法计算简单,客观地反映了各传感器测量数据的一致性和可靠程度。测量应用实例验证了其在工程中的可行性,体现了稳定性和可靠性高的传感器在测量数据融合中的“优越性”,运算过程简洁、快速、有效,便于实时测量操作。 相似文献
11.
Dempster–Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to process real-time and online conflicting evidence. In order to solve the above problems, a novel information fusion method is proposed in this paper. The proposed method combines the uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty degrees are considered as the condition of measuring information quality. Then, the adaptive conflict processing is performed by RL and the combination two uncertainty degrees. The next step is to compute Dempster’s combination rule (DCR) to achieve multi-sensor information fusion. Finally, a decision scheme based on correlation coefficient is used to make the decision. The proposed method not only realizes adaptive conflict evidence management, but also improves the accuracy of multi-sensor information fusion and reduces information loss. Numerical examples verify the effectiveness of the proposed method. 相似文献
12.
Dempster–Shafer evidence theory is widely used in modeling and reasoning uncertain information in real applications. Recently, a new perspective of modeling uncertain information with the negation of evidence was proposed and has attracted a lot of attention. Both the basic probability assignment (BPA) and the negation of BPA in the evidence theory framework can model and reason uncertain information. However, how to address the uncertainty in the negation information modeled as the negation of BPA is still an open issue. Inspired by the uncertainty measures in Dempster–Shafer evidence theory, a method of measuring the uncertainty in the negation evidence is proposed. The belief entropy named Deng entropy, which has attracted a lot of attention among researchers, is adopted and improved for measuring the uncertainty of negation evidence. The proposed measure is defined based on the negation function of BPA and can quantify the uncertainty of the negation evidence. In addition, an improved method of multi-source information fusion considering uncertainty quantification in the negation evidence with the new measure is proposed. Experimental results on a numerical example and a fault diagnosis problem verify the rationality and effectiveness of the proposed method in measuring and fusing uncertain information. 相似文献
13.
车辆识别技术作为智能交通管理系统中的研究热点和难点;在车辆识别技术中,应用Dempster- Shafer证据组合规则融合冲突信息时会产生不合理的结果;基于修正证据源的思想,提出了一种新的权重系数确定方法,该方法从证据主元角度分析,确定各组证据主元,利用该主元求出证据相容度、可信度,进而确定证据权重系数;通过新的证据冲突衡量方法,确定冲突值,归一化权重,修正证据源,按ER规则融合各组证据对目标进行识别;仿真部分以实际路面车辆车型识别为算例,将该方法与其他方法对比,结果表明:该方法能更有效地融合高度冲突的证据,减小计算复杂度,目标识别的准确性提高20%。 相似文献
14.
The main influencing factors of the clustering effect of the k-means algorithm are the selection of the initial clustering center and the distance measurement between the sample points. The traditional k-mean algorithm uses Euclidean distance to measure the distance between sample points, thus it suffers from low differentiation of attributes between sample points and is prone to local optimal solutions. For this feature, this paper proposes an improved k-means algorithm based on evidence distance. Firstly, the attribute values of sample points are modelled as the basic probability assignment (BPA) of sample points. Then, the traditional Euclidean distance is replaced by the evidence distance for measuring the distance between sample points, and finally k-means clustering is carried out using UCI data. Experimental comparisons are made with the traditional k-means algorithm, the k-means algorithm based on the aggregation distance parameter, and the Gaussian mixture model. The experimental results show that the improved k-means algorithm based on evidence distance proposed in this paper has a better clustering effect and the convergence of the algorithm is also better. 相似文献
15.
基于共振异常的消偏振型窄带滤波器分析 总被引:2,自引:0,他引:2
亚波长光栅因光栅参量的不同而具有不同的衍射特性,通过对亚波长光栅参量的合理设计来实现消偏振窄带滤波是一种新的方法与途径。首先分析了基于共振异常的窄带滤波的物理机制及存在条件,讨论了二维亚波长光栅实现消偏振窄带滤波的可能性。然后,利用严格模式理论进行了计算模拟,其计算结果与导波理论所得结果基本吻合,其衍射特性表现出周期性共振异常、敏感的角度依赖性和波长依赖性。最后,讨论了由工艺误差对滤波特性所带来的影响。为具体工艺制作提供了一定的指导。 相似文献
16.
Dempster-Shafer (DS) evidence theory is widely used in various fields of uncertain information processing, but it may produce counterintuitive results when dealing with conflicting data. Therefore, this paper proposes a new data fusion method which combines the Deng entropy and the negation of basic probability assignment (BPA). In this method, the uncertain degree in the original BPA and the negation of BPA are considered simultaneously. The degree of uncertainty of BPA and negation of BPA is measured by the Deng entropy, and the two uncertain measurement results are integrated as the final uncertainty degree of the evidence. This new method can not only deal with the data fusion of conflicting evidence, but it can also obtain more uncertain information through the negation of BPA, which is of great help to improve the accuracy of information processing and to reduce the loss of information. We apply it to numerical examples and fault diagnosis experiments to verify the effectiveness and superiority of the method. In addition, some open issues existing in current work, such as the limitations of the Dempster-Shafer theory (DST) under the open world assumption and the necessary properties of uncertainty measurement methods, are also discussed in this paper. 相似文献
17.
18.
基于扩展数学形态学的高光谱图像异常检测 总被引:1,自引:1,他引:1
提出了一种新型的基于扩展数学形态和光谱相似度测量的高光谱图像异常榆测方法.在日标与背景未知的情况下.同时利用光谱和空间信息实现日标的定位与检测,实现离光谱遥感数据的日标检测.通过扩展的膨胀和腐蚀操作实现目标特征提取;通过正交投影散度计算扩展形态学操作的累加距离确定排序关系并利用其融合特征提取结果实现特征提取结果的融合.算法性能通过合成的OMIS数据进行评价.与经典异常检测RX算法进行比较.并应用于具有相似光谱特征目标的区分.实验证明,本文提出的算法性能优于RX算法.具有低虚警率的异常目标检测结果,并且能够较好地区分了相似光谱特征的异常日标. 相似文献
19.
Ying Lv Bofeng Zhang Guobing Zou Xiaodong Yue Zhikang Xu Haiyan Li 《Entropy (Basel, Switzerland)》2022,24(7)
Domain adaptation aims to learn a classifier for a target domain task by using related labeled data from the source domain. Because source domain data and target domain task may be mismatched, there is an uncertainty of source domain data with respect to the target domain task. Ignoring the uncertainty may lead to models with unreliable and suboptimal classification results for the target domain task. However, most previous works focus on reducing the gap in data distribution between the source and target domains. They do not consider the uncertainty of source domain data about the target domain task and cannot apply the uncertainty to learn an adaptive classifier. Aimed at this problem, we revisit the domain adaptation from source domain data uncertainty based on evidence theory and thereby devise an adaptive classifier with the uncertainty measure. Based on evidence theory, we first design an evidence net to estimate the uncertainty of source domain data about the target domain task. Second, we design a general loss function with the uncertainty measure for the adaptive classifier and extend the loss function to support vector machine. Finally, numerical experiments on simulation datasets and real-world applications are given to comprehensively demonstrate the effectiveness of the adaptive classifier with the uncertainty measure. 相似文献