A hybrid coumarin-hemicyanine dye, Cou-BT, was developed as a new ratiometric and colorimetric sensor for cyanide with a sensing mechanism via nucleophilic addition of cyanide anion to the benzothiolium group. Cou-BT shows high sensitivity and selectivity for cyanide detection over other common anion species in aqueous acetonitrile solution. The calculated pseudo-first-order rate constant for cyanide anion addition was (2.13 ± 0.08) × 10(-2) s(-1) at 298 K, and the detection limit was estimated to be 0.64 μM. The DFT and TDDFT calculation results suggest that the ratiometric and colorimetric sensing behavior of Cou-BT upon its reaction with cyanide was due to the interrupted π-conjugation and blocked ICT progress. 相似文献
Alkaline phosphatase (ALP) is an important enzyme that is associated with many human diseases, so the quantitative detection of ALP is vital from a clinical perspective. Nevertheless, most fluorescent assays for monitoring ALP depend on aggregation-induced quenching (ACQ), single-signal modulation, or a “signal off” mode, which suffer from poor sensitivity, a “false positive” problem, and low signal output. In this work, we utilized the electrostatically driven self-assembly of glutathione-capped gold nanoclusters (GSH-AuNCs, which show aggregation-induced emission, AIE) and amino-modified silicon nanoparticles (SiNPs) to create a hybrid probe (SiNPs@GSH-AuNCs). This nanohybrid probe showed emission from the SiNPs at around 470 nm as well as aggregation-induced emission enhancement (AIEE) of the GSH-AuNCs at 580 nm. The AIEE of the GSH-AuNCs was quenched in the presence of KMnO4, but the AIEE was recovered by adding ascorbic acid as an oxidation–reduction reaction occurred between KMnO4 and the ascorbic acid. The fluorescence of the SiNPs remained constant whether the AIEE was quenched or not, meaning that the fluorescence of the SiNPs could be used as an internal reference. In a typical enzymatic reaction, ascorbic acid 2-phosphate is hydrolyzed by ALP to produce ascorbic acid. Therefore, the hybrid probe was shown to allow the ratiometric detection of ALP, with a linear range of 0.5–10 U L−1 and a limit of detection (LOD) of 0.23 U L−1. Finally, the proposed analytical strategy was successfully applied to detect ALP in human serum samples and to determine the concentration of an ALP inhibitor.
We design a ratiometric fluo rescent sensing platform for bleomycin(BLM) by using proximity-dependent DNA-templated silver nanoclusters(DNA-AgNCs) probe.This ratiometric sensing system is constructed with DNA-AgNCs as single fluorophore.The proposed strategy is based on the two following facts:(1) a covert DNA can approach and transform the DNA-AgNCs with green emission(G-DNA-AgNCs) into red emission through hybridization reaction.(2) The specific cleavage of the convert DNA by BLM in the presence of Fe(Ⅱ) inhibits the discoloration of G-DNA-AgNCs.Thus,benefiting from the specific recognition of BLM and unique properties of G-DNA-AgNCs,a hignly-sensitive ratiometric sensor for BLM has been successfully developed.The detection limit is as low as 30 pmol/L.This label-free fluorescence probe possesses advantages of convenient synthetic process and low cost.Moreover,this ratiometric method has been applied to the detection of BLM in human serum samples,illustrating a promising tool for analysis of BLM in cancer therapy. 相似文献
A novel nanohybrid ratiometric fluorescence probe comprised of carbon dots (C-dots) and hydrophilic CdSe@ZnS quantum dots (QDs) has been developed by simply mixing the blue-emission C-dots with red-emission carboxylmethyldithiocarbamate modified CdSe@ZnS QDs (GDTC-QDs). The nanohybrid ratiometric fluorescence probe exhibits dual emissions at 436 nm and 629 nm under a single excitation wavelength. Due to the strong chelating ability of GDTC on the surface of QDs to mercuric ion (Hg2+), the fluorescence of the GDTC-QDs in the nanohybrid system could be selectively quenched in the presence of Hg2+ while the fluorescence of the C-dots remained constant, resulting in an obviously distinguishable fluorescence color evolution (from red to blue) of the nanohybrid system. The detection limit of this method was found to be as low as 0.1 μM. Furthermore, the recovery result for Hg2+ in real samples including tap water and lake water by this method was satisfying, suggesting its potential application for Hg2+ sensing. 相似文献
A new method and device for the ratiometric measurement of oxygen concentration are presented. They are based on the use of a dual-emission oxygen-sensitive dye. The method allows the exclusion of the influence of emission overlap. The detection of the dual-emission ratio is performed using a single long-pass emission filter. The device described is simpler than the widely used lifetime instruments and could easily be a stand-alone low-cost instrument. 相似文献
We have successfully developed a ratiometric detection system for protein of interest using the complementary recognition pair of the tetra-aspartate peptide tag and the SNARF-appended Zn(ii)-DpaTyr probe. 相似文献
A novel fluorescent probe, which could be the first example of a ratiometric molecular probe for direct monitoring of NO production, has been developed using a 'spin-exchange' mechanism. 相似文献
A new ratiometric and colorimetric fluorescent probe for the highly selective, sensitive and facile detection of Hg(2+) has been rationally developed. 相似文献
Adenosine triphosphate (ATP) plays an important role in various biological processes and the ATP level is closely associated with many diseases. Herein, we designed a novel dual-emissive fluorescence nanoplatform for ATP sensing based on red emissive europium metal-organic framework (Eu-MOF) and blue emissive gold nanoclusters (AuNCs). The presence of ATP causes the decomposition of Eu-MOF owing to strong affinity of Eu3+ with ATP. As a result, the red emission of Eu-MOF decreases while the blue emission of AuNCs remains unchanged. The distinct red/blue emission intensity change enables the establishment of a ratiometric fluorescent and visual sensor of ATP. Moreover, a fluorescent paper-based sensor was fabricated with the ratiometric ATP probes, which enabled easy-to-use and visual detection of ATP in serum samples with a smartphone. 相似文献
We report herein a new class of metal ion chemosensors and give the first example of a metal-dependent peptidase chemosensor
for metal ions. The chemosensor contains the basic specific Ni(II)-dependent peptide bond hydrolysis sequence (Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Lys).
The substrate was labeled with a fluorophore at the N-terminal and a quencher at the C-terminal Lys side chain. Initially,
the MOCAc ((7-methoxycoumarin-4-yl)acetyl-) emission was quenched by the nearby quencher. In the presence of Ni(II), the substrate
was irreversibly cleaved at the cleavage site, leading to a 20-fold increase in fluorescence intensity. The chemosensor combines
the high selectivity of a peptidase (at least greater than tenfold for Ni(II) over other metal ions) with the high sensitivity
of fluorescence detection limit of 50 nM and can be applied for the quantitative detection of Ni(II) over a concentration
range of three orders of magnitude. Given this degree of selectivity and sensitivity, our molecular engineering design may
prove useful in the future development of other peptidase-based probes for different metal ions in toxicological and environmental
monitoring. 相似文献
Herein, we unveiled the first zinc complex based chemosensor for cyanide (CN(-)). The changed visual color from light reddish orange to dark reddish orange, the enhanced fluorescence intensity at approximately 600 nm and the near-linear correlation A(495)/A(325)versus the cyanide concentration were observed after adding CN(-). 相似文献
A naphthalimide-modifi ed near-infrared cyanine dye (emission at 785 nm) with a large Stokes shift (up to 165 nm) has been synthesized and had favorable lysosome-targeting property. 相似文献
A new class of abasic site-binding fluorescence ligands, Naph-NBD in which 7-nitrobenzo-2-oxa-1,3-diazole (NBD) is connected to 2-amino-7-methyl-1,8-naphthyridine (Naph) by a propylene linker, is presented for the ratiometric assay for SNPs typing. In solutions buffered to pH 7.0 (I = 0.11 M, at 5 degrees C), Naph-NBD is found to selectively recognize pyrimidine bases over purine bases opposite the abasic site in DNA duplexes (K11/M(-1): T, 8.1 x 10(6); C, 2.5 x 10(6): G, 0.33 x 10(6); A, 0.27 x 10(6)). The binding of Naph-NBD is accompanied by significant quenching of the fluorescence from the naphthyridine moiety (lambda max, 409 nm), while the emission from the NBD (lamda max, 544 nm) is relatively unaffected. Such a fluorescence response of Naph-NBD allows the emission ratio detection of pyrimidine/purine transversion. 相似文献
An ESIPT-based fluorescent probe (Probe 1) using acrylate as recognition group for the selective and sensitive detection of cysteine/homocysteine (Cys/Hcy) has been developed. In the presence of Cys/Hcy, this probe was transformed into 1,3-bis(bispyridin-2ylimino)isoindolin-4-ol (dye 4) which displayed red fluorescence with a large Stokes shift (217 nm) when excited. The detection limits are as low as 5.4 nM and 7.0 nM for Cys and Hcy respectively (based on S/N = 3). Importantly, this probe has been successfully demonstrated for the detection of intracellular Cys/Hcy in living cells. 相似文献
Glutathionylcobalamin (GSCbl) is a vitamin B12 derivative that contains glutathione as the upper axial ligand to cobalt via a Co–S bond. In the present study, we discovered that cyanide reacted with GSCbl, generating cyanocobalamin (CNCbl) and reduced glutathione (GSH) via dicyanocobalamin (diCNCbl) intermediate. This reaction was induced specifically by the nucleophilic attack of cyanide anion displacing the glutathione ligand of GSCbl. Based on the reaction of GSCbl with cyanide, we developed new methods for the detection of cyanide. The reaction intermediate, violet-coloured diCNCbl, could be applied for naked eye detection of cyanide and the detection limit was estimated to be as low as 520 μg L?1 (20 μM) at pH = 10.0. The reaction product, CNCbl, could be applied for a spectrophotometric quantitative determination of cyanide with a detection limit of 26 μg L?1 (1.0 μM) at pH = 9.0 and a linear range of 26–520 μg L?1 (1.0–50 μM). In addition, the other reaction product, GSH, could be applied for a fluorometric quantitative determination of cyanide with a detection limit of 31 μg L?1 (1.2 μM) at pH = 9.0 and a linear range of 31–520 μg L?1 (1.2–20 μM). These new GSCbl-based methods are simple, highly specific and sensitive with great applicability for the detection of cyanide in biological and non-biological samples. 相似文献
A poly(ethylene glycol) (PEG) decorated bis(terpyridine) zinc coordination polymer acts as an anion-responsive material in 100% aqueous solution. Depending on the binding and association constants to Zn(II), the addition of different anions leads to increased emission intensity and/or a shift of the emission wavelength. The sensor was addressed with a collection of common salts to survey the selectivity of the emission response. Phosphate and cyanide, representing the strongest anion binding to zinc(II), were detected even in the presence of other ions in tap water. Biologically relevant phosphates such as diphosphates and adenosine-5'-triphosphate (ATP) also produced a strong response. Because the binding constants with Zn(II) are very high, anion concentrations in the range of 10(-6) to 10(-7) M are sufficient. 相似文献
New heptamethine cyanine dyes with an alkylamino group at the central position were found to exhibit a large Stokes shift (>140 nm) and strong fluorescence. They were suggested to be a new paradigm for excited-state intramolecular charge transfer (ICT). The configuration change of the bridgehead amine accompanying ICT was investigated in different viscosity and pH media. 相似文献