首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
《Liquid crystals》2001,28(2):307-312
In this work we report preliminary results on the properties of a non-polar bicyclohexane nematic liquid crystal. Moreover, its binary mixtures both with a low viscosity phenylcyclohexane and with a normal polar nematic liquid have been investigated. The elastic, viscous and electro-optical properties of these compounds are presented. The non-polar compound, and its mixture with a low percentage of the well known liquid crystal MBBA, exhibit an electrohydrodynamic behaviour in which the conducting regime is absent, while the dielectric regime spreads to low frequencies. Additionally, at higher frequencies of the applied electric field, a regime whose thresholds are linear in frequency is observed. On the other hand, the mixture formed by 50 wt % of the non-polar compound with MBBA exhibits at low frequencies the usual behaviour, followed at higher frequencies by the linear regime.  相似文献   

2.
In this work we report preliminary results on the properties of a non-polar bicyclohexane nematic liquid crystal. Moreover, its binary mixtures both with a low viscosity phenylcyclohexane and with a normal polar nematic liquid have been investigated. The elastic, viscous and electro-optical properties of these compounds are presented. The non-polar compound, and its mixture with a low percentage of the well known liquid crystal MBBA, exhibit an electrohydrodynamic behaviour in which the conducting regime is absent, while the dielectric regime spreads to low frequencies. Additionally, at higher frequencies of the applied electric field, a regime whose thresholds are linear in frequency is observed. On the other hand, the mixture formed by 50 wt % of the non-polar compound with MBBA exhibits at low frequencies the usual behaviour, followed at higher frequencies by the linear regime.  相似文献   

3.
The interdependence of the enthalpic contribution A2, H and the entropic contribution A2, s to the second osmotic virial coefficient for a given polymer-solvent system has been investigated from the experimental and the theoretical point of view. Experimentally, the following common facts were observed for various systems at temperatures and pressures below the critical values for the solvent. Both the isobaric and isothermal dependences can be approximated over relatively wide ranges of A2, H by linear relations with a slope deviating only slightly, but in a characteristic manner from a value of ?1. When the temperature is increased at constant pressure one moves along an isobar towards higher A2, H; when the pressure is increased at constant temperature, one moves along an isotherm in the opposite direction, i.e., towards lower A2, H. Theoretically this behavior can be described in a qualitative manner, starting from a relation derived by Patterson and Delmas on the basis of the Prigogine corresponding-states theory. The reasons for the lack of quantitative agreement are discussed.  相似文献   

4.
Atomic force microscopy (AFM) studies under aqueous buffer probed the role of chemical affinity between liposomes, consisting of large unilamellar vesicles, and substrate surfaces in driving vesicle rupture and tethered lipid bilayer membrane (tLBM) formation on Au surfaces. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio) propionate] (DSPE-PEG-PDP) was added to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles to promote interactions via Au-thiolate bond formation. Forces induced by an AFM tip leading to vesicle rupture on Au were quantified as a function of DSPE-PEG-PDP composition with and without osmotic pressure. The critical forces needed to initiate rupture of vesicles with 2.5, 5, and 10 mol % DSPE-PEG-PDP are approximately 1.1, 0.8, and 0.5 nN, respectively. The critical force needed for tLBM formation decreases from 1.1 nN (without osmotic pressure) to 0.6 nN (with an osmotic pressure due to 5 mM of CaCl(2)) for vesicles having 2.5 mol % DSPE-PEG-PDP. Forces as high as 5 nN did not lead to LBM formation from pure POPC vesicles on Au. DSPE-PEG-PDP appears to be important to anchor and deform vesicles on Au surfaces. This study demonstrates how functional lipids can be used to tune vesicle-surface interactions and elucidates the role of vesicle-substrate interactions in vesicle rupture.  相似文献   

5.
We report quantum-chemical calculations of the activation free energy of solvolysis of the pyrophosphate bond in a conformationally flexible reactant coupled to a constraining potential. The results reveal a significant contribution of conformational entropy to the force-dependent kinetics of even a fairly small reactant, suggesting that accurate predictions or molecular interpretation of localized reaction kinetics in stretched polymers may require explicit consideration of their force-dependent conformational heterogeneity. We further show that modeling the conformational space of the reactant and the transition state as collections of overlapping harmonic wells accurately predicts the force-dependent activation free energy up to 2 nN without detailed quantum-chemical computations. An estimate of the activation energies is obtained from the minimal (Eyring-Bell-Evans) model using the local coordinate common to all nucleophilic displacement reactions.  相似文献   

6.
This work was motivated by the unexpected values of adhesion forces measured between an atomic force microscopy tip and the hydrophobic surface of ultra-high-molecular-weight polyethylene. Two types of samples with different roughness but similar wettability were tested. Adhesion forces of similar magnitude were obtained in air and in polar liquids (water and Hank's Balanced Salt Solution, a saline solution) with the rougher sample. In contrast, the adhesion forces measured on the smoother sample in air were much higher than those measured in water or in the aqueous solution. Those experimental results suggested the presence of nanobubbles at the interface between the rough sample and the polar liquids. The existence of the nanobubbles was further confirmed by the images of the interface obtained in noncontact tapping mode. The adhesion forces measured in a nonpolar liquid (hexadecane) were small and of the same order of magnitude for both samples and their values were in good agreement with the predictions of the London-Hamaker approach for the van der Waals interactions. Finally, we correlate the appearance of nanobubbles with surface topography. The conclusion of this work is that adhesion forces measured in aqueous media may be strongly affected by the presence of nanobubbles if the surface presents topographical accidents.  相似文献   

7.
We investigate the interaction between a nanoparticle and an oil-water interface with particular emphasis on the particle crossing through the interface. The formation of a three-phase contact line is investigated in two cases, namely in the presence and in the absence of surface forces. We carefully examine the interplay between capillary and surface forces in such systems. Two instabilities of the interface (snap-in/snap-out) as the particle is moved through the interface are identified and quantitatively described. While the snap-in instability was observed in some AFM studies, the precise interface position and configuration relative to the particle at the instability depends on the nature of the surface forces present in the system. After the snap-in, the particle is adsorbed and must overcome an energy barrier due to the interface deformation in order to cross-over to the other liquid. We make quantitative predictions on the interface configuration at the instabilities and the free energy barrier height. The roles of particle size and different interaction parameters characterizing the system in determining the magnitude of the energy barrier for crossing and in the formation of a three-phase contact line are discussed. Ultimately, this study will enable us to make quantitative predictions on capillary effects in nanoparticle-microemulsions mixtures and other colloidal systems. For particles in the micrometer range and larger the capillary forces dominate over the surface forces and dictate how the snap-in occurs. However, the situation becomes different for particle sizes smaller than about 100 nm. The presence of surface forces modifies the interface configuration and the free energy jump at the snap-in instability.  相似文献   

8.
The role of the geometry of locally favoured structures in an equilibrium liquid is analyzed within a recently developed lattice model. The local geometry is shown to influence the liquid through the entropy and the associated density of states. We show that favoured local structures with low symmetry will, generally, incur a low entropy cost and, as a consequence, the liquid will exhibit a substantial accumulation of these low energy environments on cooling prior to the freezing transition.  相似文献   

9.
When two solid bodies are placed on the surface of a dense liquid under gravitation, they deform the liquid surface to experience a lateral capillary force between themselves that can be attractive and repulsive, depending on the wettabilities and weights of the bodies. In the present study, the lateral capillary force between two square bodies at a liquid-vapor interface has been examined using numerical simulations based on a two-dimensional two-phase lattice Boltzmann (LB) method. The particular situations were simulated, where every body was vertically constrained and had the fixed triple points at its upper or lower corners. Here, the triple point indicates the place at which vapor, liquid, and solid phases meet. The interaction force between these two bodies was calculated as a function of the separation distance, the interfacial tension, and the gravitational acceleration. The simulation results agree well with the analytical expression of the lateral capillary interaction, indicating that our LB method can reproduce the interaction force between two bodies of various wettabilities at a liquid-vapor interface in mechanical equilibrium.  相似文献   

10.
By means of a variant of the Monte Carlo method (entropic sampling within the Wang-Landau algorithm) the models of the interaction of a neutral polymer with a flat surface are studied. The method yields distribution functions over the energy and the distance from the polymer to the surface. Based on these distributions, excess entropies of the systems and their thermal properties are calculated: internal energy, heat capacity, average radius of gyration, average chain end-to-end distance, and average distance from the polymer to the surface. Continuous and lattice models are considered.  相似文献   

11.
A modified set-up was applied to carry out direct measurements of the forces of molecular attraction of gold spheres and crossed quartz filaments in air within the region of distances from 10 to 100 nm. Some quantitative deviations from Lifshitz's theory for gold may be attributed to an insufficient reliability of the spectral data used in the calculations. The DLVO theory adequately describes the interaction of glass threads in KCl (10?3 ÷ 10?5 N) solutions within the region of 5 to 100 nm. At a distance smaller than 5 nm, the deviations from DLVO theory are attributable to the influence of structural forces.When the contact between crossed hydrophobized quartz threads in water is broken, the attraction forces (which exceed the molecular forces by several orders of magnitude) at a distance of up to 300 nm are detected.  相似文献   

12.
In a binary liquid mixture, the component possessing the lowest surface tension preferentially adsorbs at the liquid-vapor surface. In the past this adsorption behavior has been extensively investigated for critical binary liquid mixtures near the mixture's critical temperature T(c). In this fluctuation-dominated regime the adsorption is described by a universal function of the dimensionless depth zxi where xi is the bulk correlation length. Fewer studies have quantitatively examined adsorption for off-critical mixtures because, in this case, one must carefully account for both the bulk and surface crossover from the fluctuation-dominated regime (close to T(c)) to the mean-field dominated regime (far from T(c)). In this paper we compare extensive liquid-vapor ellipsometric adsorption measurements for the mixture aniline+cyclohexane at a variety of critical and noncritical compositions with the crossover theory of Kiselev and co-workers [J. Chem. Phys. 112, 3370 (2000)].  相似文献   

13.
Summary The excess surface tension of a large number of binary liquid mixtures has been correlated with their topological features quantified in terms of the molecular connectivity indices. The agreement between the calculated and experimental E values is reasonably well for all the mixtures. A simple correlation has also been proposed between E and molar excess volume (V E ) of a binary mixture. The correlation is quite useful in correlating E data even for the mixtures where either one or both the components are associated in the pure state and/or there is interaction between them.
Korrelation zwischen topologischen Gegebenheiten und Oberflächenspannung von binären flüssigen Mischungen
Zusammenfassung Die Exzeß-Oberflächenspannungen einer großen Anzahl von binären flüssigen Mischungen wurden mit der Topologie ihrer Komponenten in Form der molekularen Konnektivitätsindices korreliert. Die Übereinstimmung zwischen den E -Werten ist für alle Mischungen relativ gut. Es wurde ebenfalls eine einfache Korrelation zwischen E und den molaren Exzeß-Volumina (V E ) der binären Mischungen vorgeschlagen. Diese Korrelierung ist nützlich, um die E -Werte sogar dann für die Korrelation von Mischungen verwenden zu können, wenn entweder eine oder beide Komponenten im Reinzustand assoziiert sind und/oder eine Wechselwirkung zwischen ihnen besteht.
  相似文献   

14.
Preferential sorptions and pervaporation selectivities in poly (vinyl chloride) (PVC) membrane for various binary liquid mixtures were investigated. Methanol/n-propanol, benzene/n-hexane, and ethanol/water mixtures were selected as the binary liquid mixture. In the methanol/n-propanol mixture, methanol was preferentially sorbed in the PVC membrane and predominantly permeated. In the benzene/n-hexane mixture, benzene was incorporated and permeated preferentially. In the ethanol/water mixture, ethanol was preferentially sorbed in the PVC membrane and water was preferentially permeated. The preferential sorptions were analyzed according to Mulder's model derived from Flory-Huggins thermodynamics. The pervaporation selectivity in these systems were discussed using a sorption selectivity and diffusion selectivity. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
When a small droplet of a nematic liquid crystal is placed on a horizontal glass plate in the presence of a magnetic field, the plane of polarization of light transmitted upward through the liquid crystal can be rotated. A defect usually forms preferring a direction perpendicular to the magnetic field and forming a diagonal of the droplet. This defect divides the free surface into regions giving rise to optical rotations that are clockwise and counterclockwise. It is suggested that the defect may be similar to a Helfrich splay-bend wall and the optical rotation in the regions near the defect may be explained by surface effects at the free surface of a liquid crystal.  相似文献   

16.
Excess molar volumes V E and excess molar heat capacities C P /E at constant pressure have been obtained, as a function of mole fraction x1, for several binary liquid mixtures belonging either to series I: pyridine+n-alkane (ClH2l+2), with l=7, 10, 14, 16, or series II: piperidine+n-alkane, with l=7, 8, 10, 12, 14. The instruments used were a vibrating-tube densimeter and a Picker flow microcalorimeter, respectively. V E of pyridine+n-heptane shows a S-shaped composition dependence with a small negative part in the region rich in pyridine (x1>0.90). All the other systems show positive V E only. The excess volumes increase with increasing chain length l of the n-alkane. The excess molar heat capacities of the mixtures belonging to series II are all negative, except for a small positive part for piperidine+n-heptane in the region rich in piperidine (x1>0.87). The C P /E at the respective minima, C P /E (x1,min ), become more negative with increasing l, and the x1,min values range from about 0.26 (l=7) to 0.39 (l=14). Most interestingly, mixtures of series I exhibit curves of C P /E against x1 with two minima and one maximum, the so-called W-shape curves.Dedicated to Professor A. Néckel on the occasion of his 65th birthday. Communicated in part at the XVIIèmes Journées de Calorimétrie, d'Analyse Thermique et de Thermodynamique Chimique, Ferrara, Italy, 27–30 October, 1986.  相似文献   

17.
In the lower critical solution temperature phase separation of poly(vinyl methyl ether) aqueous solutions, the process corresponding to the weakening of the hydrogen bond interaction with increasing temperature is dominant and occurs over the entire concentration region of solutions and over a broad temperature range from 30 to 41°C, giving rise to the energetic enthalpic effect during phase separation, while the conformational change, that is, collapse of the swollen polymer coils, occurs only in the swelling polymer solution when the water concentration is above 38.3 wt %, giving rise to the entropic effect during phase separation. In addition, the entropic process corresponding to the collapse of the polymer coils occurs in a much narrow theta temperature range from 35.5 to 37°C. If the solution is held at a constant temperature for a sufficiently long time, 90% collapse of the polymer coils occurs in only the 0.5 °C temperature region between 35.5 and 36°C. Accordingly, in the enthalpic process, the most dramatic blueshift of the νC‐O bond peak occurs in the temperature range between 35 and 41°C, while this blueshift is only approximately 2 cm?1 in the temperature range from 30 to 35°C, prior to the collapse of the polymer coils due to the entropic effect. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 323–330  相似文献   

18.
The isochorismate-pyruvate lyase from Pseudomonas aeruginosa (PchB) catalyzes two pericyclic reactions, demonstrating the eponymous activity and also chorismate mutase activity. The thermodynamic parameters for these enzyme-catalyzed activities, as well as the uncatalyzed isochorismate decomposition, are reported from temperature dependence of k(cat) and k(uncat) data. The entropic effects do not contribute to enzyme catalysis as expected from previously reported chorismate mutase data. Indeed, an entropic penalty for the enzyme-catalyzed mutase reaction (ΔS(++) = -12.1 ± 0.6 cal/(mol K)) is comparable to that of the previously reported uncatalyzed reaction, whereas that of the enzyme-catalyzed lyase reaction (ΔS(++) = -24.3 ± 0.2 cal/(mol K)) is larger than that of the uncatalyzed lyase reaction (-15.77 ± 0.02 cal/(mol K)) documented here. With the assumption that chemistry is rate-limiting, we propose that a reactive substrate conformation is formed upon loop closure of the active site and that ordering of the loop contributes to the entropic penalty for converting the enzyme substrate complex to the transition state.  相似文献   

19.
Thin liquid films arise in many technological applications and biological phenomena. They also present a fascinating object of study, because of a rich interplay between capillarity, hydrodynamics, interfacial transport phenomena and interfacial rheology, as well as the effects of interaction forces when films thin down to molecular thicknesses. Recent advances in experimental techniques have given further insights in the variety of physical phenomena, which can occur. These techniques are briefly reviewed. How these techniques can be utilised is illustrated by recent studies addressing the effect of interfacial rheological stresses on drainage, the interplay between capillarity and hydrodynamics during film retraction, and the solutocapillary stabilisation of films. Finally, we briefly discuss the challenges of conducting drainage measurements at high and varied capillary numbers and how these could be overcome by the combined use of experiments and simulations.  相似文献   

20.
In solution small-angle neutron scattering has been used to study the solvation properties of lysozyme dissolved in water/glycerol mixtures. To detect the characteristics of the protein-solvent interface, 35 different experimental conditions (i.e., protein concentration, water/glycerol fraction in the solvent, content of deuterated compounds) have been considered and a suitable software has been developed to fit simultaneously the whole set of scattering data. The average composition of the solvent in the close vicinity of the protein surface at each experimental condition has been derived. In all the investigated conditions, glycerol resulted especially excluded from the protein surface, confirming that lysozyme is preferentially hydrated. By considering a thermodynamic hydration model based on an equilibrium exchange between water and glycerol from the solvation layer to the bulk, the preferential binding coefficient and the excess solvation number have been estimated. Results were compared with data previously derived for ribonuclease A in the same mixed solvent: even if the investigated solvent compositions were very different, the agreement between data is noticeable, suggesting that a unique mechanism presides over the preferential hydration process. Moreover, the curve describing the excess solvation number as a function of the solvent composition shows the occurrence of a region of maximal hydration, which probably accounts for the changes in protein stability detected in the presence of cosolvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号