首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New beauvericins have been synthesized using the nonribosomal peptide synthetase BbBEAS from the entomopathogenic fungus Beauveria bassiana. Chemical diversity was generated by in vitro chemoenzymatic and in vivo whole cell biocatalytic syntheses using either a B. bassiana mutant or an E. coli strain expressing the bbBeas gene.  相似文献   

2.
Biotransformation is an effective method to generate new derivatives from natural products. Combination of various enzymes or whole-cell biocatalysts creates new opportunities for natural product biosynthesis. Dihydroresorcylide (1) is a phytotoxic macrolactone from Acremonium aeae. It was first chlorinated at C-11 by an engineered Escherichia coli BL21-CodonPlus (DE3)-RIL/pJZ54 strain that overexpresses a fungal flavin-dependent halogenase, and subsequently glycosylated at 12-OH by Beauveria bassiana ATCC 7159, giving rise to a novel derivative, 11-chloro-4'-O-methyl-12-O-beta-D-glucosyl-dihydroresorcylide (3). Although 1 can be converted into a new 4'-O-methyl-glucosylated derivative 4 by B. bassiana, this product cannot be further chlorinated by E. coli BL21-CodonPlus (DE3)-RIL/pJZ54 to afford 3. The sequence of these two biotransformation steps was thus restricted and not interchangeable. This sequential biotransformation approach can be applied to other structurally similar natural products to create novel derivatives.  相似文献   

3.
The red gene cluster of Streptomyces coelicolor directs production of undecylprodiginine. Here we report that this gene cluster also directs production of streptorubin B and show that 2-undecylpyrrole (UP) is an intermediate in the biosynthesis of undecylprodiginine and streptorubin B. The redPQRKL genes are involved in UP biosynthesis. RedL and RedK are proposed to generate UP from dodecanoic acid or a derivative. A redK(-) mutant produces a hydroxylated undecylprodiginine derivative, whereas redL(-) and redK(-) mutants require addition of chemically synthesized UP for production of undecylprodiginine and streptorubin B. Fatty acid biosynthetic enzymes can provide dodecanoic acid, but efficient and selective prodiginine biosynthesis requires RedPQR. Deletion of redP, redQ, or redR leads to an 80%-95% decrease in production of undecylprodiginine and an array of prodiginine analogs with varying alkyl chains. In a redR(-) mutant, the ratio of these can be altered in a logical manner by feeding various fatty acids.  相似文献   

4.
The biosynthesis of the fungal metabolite tenellin from Beauveria bassiana CBS110.25 was investigated in the presence of the epigenetic modifiers 5-azacytidine and suberoyl bis-hydroxamic acid and under conditions where individual genes from the tenellin biosynthetic gene cluster were silenced. Numerous new compounds were synthesized, indicating that the normal predominant biosynthesis of tenellin is just one outcome out of a diverse array of possible products. The structures of the products reveal key clues about the programming selectivities of the tenellin polyketide synthase.  相似文献   

5.
BACKGROUND: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-beta-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain 'Streptomyces maritimus' deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides. RESULTS: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from 'S. maritimus' has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis. CONCLUSIONS: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

6.
Microorganisms produce small molecules known as siderophores to scavenge iron from the environment. Insight into iron acquisition in myxobacteria has been provided recently by the sequencing of the gene cluster for the catecholate myxochelins A and B, from the myxobacterium Stigmatella aurantiaca Sg a15. The gene cluster contains enzymes (MxcCDEF) for assembly of 2,3-dihydroxybenzoic acid (DHBA), an amino transferase, MxcL, and a nonribosomal peptide synthetase (NRPS) subunit, MxcG. In the proposed pathway to the myxochelins, two molecules of DHBA are condensed with the two amino groups of lysine, which is itself tethered to the peptidyl carrier protein domain (PCP) of MxcG. The resulting thioester is then reduced by the NADPH-dependent reductase (Red) domain of MxcG to generate an aldehyde intermediate; subsequent Red-catalyzed reduction yields myxochelin A, while transamination by MxcL produces myxochelin B. Although myxochelin A has been obtained successfully in vitro, it has not been possible to date to reconstitute the transamination reaction to give myxochelin B nor to unequivocally establish the intermediacy of the aldehyde. We report here the successful biosynthesis of myxochelin B in vitro. Furthermore, we demonstrate for the first time the existence of an aldehyde intermediate in the four-electron reduction of a PCP-bound thioester. Finally, we show that the relative levels of myxochelin A and B are likely to be controlled by the direct competition of MxcL and the MxcG Red domain for a free aldehyde intermediate.  相似文献   

7.
Beauvericin is a cyclic hexadepsipeptide mycotoxin, which has insecticidal, antimicrobial, antiviral and cytotoxic activities. It is a potential agent for pesticides and medicines. This paper reviews the bioactivity, fermentation and biosynthesis of the fungal product beauvericin.  相似文献   

8.
Wall teichoic acids (WTAs) are anionic polymers that play key roles in bacterial cell shape, cell division, envelope integrity, biofilm formation, and pathogenesis. B. subtilis W23 and S. aureus both make polyribitol-phosphate (RboP) WTAs and contain similar sets of biosynthetic genes. We use in?vitro reconstitution combined with genetics to show that the pathways for WTA biosynthesis in B. subtilis W23 and S.?aureus are different. S. aureus requires a glycerol-phosphate primase called TarF in order to make RboP-WTAs; B. subtilis W23 contains a TarF homolog, but this enzyme makes glycerol-phosphate polymers and is not involved in RboP-WTA synthesis. Instead, B. subtilis TarK functions in place of TarF to prime the WTA intermediate for chain extension by TarL. This work highlights the enzymatic diversity of the poorly characterized family of phosphotransferases involved in WTA biosynthesis in Gram-positive organisms.  相似文献   

9.
Butirosins A and B are naturally occurring aminoglycoside antibiotics that have a (2S)-4-amino-2-hydroxybutyrate (AHBA) side chain. Semisynthetic addition of AHBA to clinically valuable aminoglycoside antibiotics has been shown both to improve their pharmacological properties and to prevent their deactivation by a number of aminoglycoside-modifying enzymes involved in bacterial resistance. We report here that the biosynthesis of AHBA from L-glutamate, encoded within a previously identified butirosin biosynthetic gene cluster, proceeds via intermediates tethered to a specific acyl carrier protein (ACP). Five components of the pathway have been purified and characterized, including the ACP (BtrI), an ATP-dependent ligase (BtrJ), a pyridoxal phosphate-dependent decarboxylase (BtrK), and a two-component flavin-dependent monooxygenase system (BtrO and the previously unreported BtrV). The proposed biosynthetic pathway includes a gamma-glutamylation of an ACP-derived gamma-aminobutyrate intermediate, possibly a rare example of protective group chemistry in biosynthesis.  相似文献   

10.
A method is described using LC-MS-MS for the detection of five different enniatins in grain. The method involves extraction of the fungal secondary metabolites using acetonitrile-water and quantification using LC-MS-MS with atmospheric pressure chemical ionisation, without further treatment of sample extracts. The selected ion reaction of [M + NH4]+ to [M + H]+ was utilised in the specific detection of the compounds. Mean recoveries (n = 5-12) of enniatins from spiked grain samples over a period of six months were 99-115%, 86-131%, 97-113%, 73-100% and 78-114% for beauvericin, enniatin A, A1, B and B1, respectively. The limits of detection were 3.0 microg/kg for beauvericin, enniatin A, B and B1 and 4.0 microg/kg for enniatin A1, which corresponds to on-column detection limits of 7.5 pg and 10 pg, respectively.  相似文献   

11.
12.
Background: Polycyclic aromatic polyketides, such as the tetracyclines and anthracyclines, are synthesized by bacterial aromatic polyketide synthases (PKSs). Such PKSs contain a single set of iteratively used individual proteins for the construction of a highly labile poly-β-carbonyl intermediate that is cyclized by associated enzymes to the core aromatic polyketide. A unique polyketide biosynthetic pathway recently identified in the marine strain ‘Streptomyces maritimus’ deviates from the normal aromatic PKS model in the generation of a diverse series of chiral, non-aromatic polyketides.Results: A 21.3 kb gene cluster encoding the biosynthesis of the enterocin and wailupemycin family of polyketides from ‘S. maritimus’ has been cloned and sequenced. The biosynthesis of these structurally diverse polyketides is encoded on a 20 open reading frames gene set containing a centrally located aromatic PKS. The architecture of this novel type II gene set differs from all other aromatic PKS clusters by the absence of cyclase and aromatase encoding genes and the presence of genes encoding the biosynthesis and attachment of the unique benzoyl-CoA starter unit. In addition to the previously reported heterologous expression of the gene set, in vitro and in vivo expression studies with the cytochrome P-450 EncR and the ketoreductase EncD, respectively, support the involvement of the cloned genes in enterocin biosynthesis.Conclusions: The enterocin biosynthesis gene cluster represents the most versatile type II PKS system investigated to date. A large series of divergent metabolites are naturally generated from the single biochemical pathway, which has several metabolic options for creating structural diversity. The absence of cyclase and aromatase gene products and the involvement of an oxygenase-catalyzed Favorskii-like rearrangement provide insight into the observed spontaneity of this pathway. This system provides the foundation for engineering hybrid expression sets in the generation of structurally novel compounds for use in drug discovery.  相似文献   

13.
Polyynes (polyacetylenes), which are produced by a variety of organisms, play important roles in ecology. Whereas alkyne biosynthesis in plants, fungi, and insects has been studied, the biogenetic origin of highly unstable bacterial polyynes has remained a riddle. Transposon mutagenesis and genome sequencing unveiled the caryoynencin (cay) biosynthesis gene cluster in the plant pathogen B. caryophylli, and homologous gene clusters were found in various other bacteria by comparative genomics. Gene inactivation and phylogenetic analyses revealed that novel desaturase/acetylenase genes mediate bacterial polyyne assembly. A cytochrome P450 monooxygenase is involved in the formation of the allylic alcohol moiety, as evidenced by analysis of a fragile intermediate, which was stabilized by an in situ click reaction. This work not only grants first insight into bacterial polyyne biosynthesis but also demonstrates that the click reaction can be employed to trap fragile polyynes from crude mixtures.  相似文献   

14.
Pamamycins are macrodiolides of polyketide origin with antibacterial activities. Their biosynthesis has been proposed to utilize succinate as a building block. However, the mechanism of succinate incorporation into a polyketide was unclear. Here, we report identification of a pamamycin biosynthesis gene cluster by aligning genomes of two pamamycin‐producing strains. This unique cluster contains polyketide synthase (PKS) genes encoding seven discrete ketosynthase (KS) enzymes and one acyl‐carrier protein (ACP)‐encoding gene. A cosmid containing the entire set of genes required for pamamycin biosynthesis was successfully expressed in a heterologous host. Genetic and biochemical studies allowed complete delineation of pamamycin biosynthesis. The pathway proceeds through 3‐oxoadipyl‐CoA, a key intermediate in the primary metabolism of the degradation of aromatic compounds. 3‐Oxoadipyl‐CoA could be used as an extender unit in polyketide assembly to facilitate the incorporation of succinate.  相似文献   

15.
Constructing a mutant strain of single gene disruption is the basis for the study of gene function and metabolomics. Systematic and complete genome sequencing is the basis of genetic manipulation. In the case of a little knowledge about the Streptomyces lydicus genome and the speculation that polyketide synthases (type I) might be responsible for the polyketide side chain biosynthesis of streptolydigin, a 588-bp fragment was amplified by polymerase chain reaction (PCR) according to the homology existing in the same functional genes among Streptomyces. A mutant strain of this gene was constructed by single crossover homologous recombination. The results of sequence analysis as well as the metabolite analysis of the mutant and the original strain by liquid chromatography/mass spectroscopy indicated that this fragment was part of type II thioesterase (TE) gene, which was required for streptolydigin biosynthesis like other type II TEs function in related antibiotics biosynthesis. Furthermore, targeted gene manipulation based on PCR was a powerful tool for studying gene function and metabolomics, especially when little was known about the genomic sequence of streptomyces.  相似文献   

16.
A reliable and rapid method has been developed for the determination of 10 mycotoxins (beauvericin, enniatin A, A1, B1, citrinin, aflatoxin B1, B2, G1, G2 and ochratoxin A) in eggs at trace levels. Ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) has been used for the analysis of these compounds in less than 7 min. Mycotoxins have been extracted from egg samples using a QuEChERS-based extraction procedure (Quick, Easy, Cheap, Effective, Rugged and Safe) without applying any further clean-up step. Extraction, chromatographic and detection conditions were optimised in order to increase sample throughput and sensitivity. Matrix-matched calibration was used for quantification. Blank samples were fortified at 10, 25, 50 and 100 μg kg(-1), and recoveries ranged from 70% to 110%, except for ochratoxin A and aflatoxin G1 at 10 μg kg(-1), and aflatoxin G2 at 50 μg kg(-1). Relative standard deviations were lower than 25% in all the cases. Limits of detection ranged from 0.5 μg kg(-1) (for aflatoxins B1, B2 and G1) to 5 μg kg(-1) (for enniatin A, citrinin and ochratoxin A) and limits of quantification ranged from 1 μg kg(-1) (for aflatoxins B1, B2 and G1) to 10 μg kg(-1) (for enniatin A, citrinin and ochratoxin A). Seven samples were analyzed and aflatoxins B1, B2, G1, G2, and beauvericin were detected at trace levels.  相似文献   

17.
Zhao Q  He Q  Ding W  Tang M  Kang Q  Yu Y  Deng W  Zhang Q  Fang J  Tang G  Liu W 《Chemistry & biology》2008,15(7):693-705
Azinomycin B is a complex natural product containing densely assembled functionalities with potent antitumor activity. Cloning and sequence analysis of the azi gene cluster revealed an iterative type I polyketide synthase (PKS) gene, five nonribosomal peptide synthetases (NRPSs) genes and numerous genes encoding the biosynthesis of unusual building blocks and tailoring steps for azinomycin B production. Characterization of AziB as a 5-methyl-naphthoic acid (NPA) synthase showed a distinct selective reduction pattern in aromatic polyketide biosynthesis governed by bacterial iterative type I PKSs. Heterologous expression established the PKS-post modification route from 5-methyl-NPA to reach the first building block 3-methoxy-5-methyl-NPA. This proposed azinomycin B biosynthetic pathway sets the stage to investigate the enzymatic mechanisms for building structurally unique and pharmaceutically important groups, including the unprecedented azabicyclic ring system and highly active epoxide moiety.  相似文献   

18.
19.
Phenalinolactones are terpene glycosides with antibacterial activity. A striking structural feature is a highly oxidized gamma-butyrolactone of elusive biosynthetic origin. To investigate the genetic basis of the phenalinolactones biosynthesis, we cloned and sequenced the corresponding gene cluster from the producer strain Streptomyces sp. Tü6071. Spanning a 42 kbp region, 35 candidate genes could be assigned to putatively encode biosynthetic, regulatory, and resistance-conferring functions. Targeted gene inactivations were carried out to specifically manipulate the phenalinolactones pathway. The inactivation of a sugar methyltransferase gene and a cytochrome P450 monoxygenase gene led to the production of modified phenalinolactone derivatives. The inactivation of a Fe(II)/alpha-ketoglutarate-dependent dioxygenase gene disrupted the biosynthetic pathway within gamma-butyrolactone formation. The structure elucidation of the accumulating intermediate indicated that pyruvate is the biosynthetic precursor of the gamma butyrolactone moiety.  相似文献   

20.
Mutation of the HMG-CoA synthase encoding mupH gene in Pseudomonas fluorescens gives rise to a new metabolite formed from a truncated polyketide intermediate, providing in vivo evidence for the roles of mupH and cognate genes found in several "AT-less" and other bacterial PKS gene clusters responsible for the biosynthesis of diverse metabolites containing acetate/propionate derived side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号