首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsaturated selenacrown ethers, (Z,Z,Z,Z,Z)-1,4,7,10,13-pentaselenacyclopentadeca-2,5,8,11,14-pentaene (15-US-5) (2), (Z,Z,Z,Z,Z,Z)-1,4,7,10,13,16-hexaselenacyclooctadeca-2,5,8,11,14,17-hexaene (18-US-6) (3), (Z,Z,Z,Z,Z,Z,Z)-1,4,7,10,13,16,19-heptaselenacycloheneicosa-2,5,8,11,14,17,20-heptaene (21-US-7) (4), (Z,Z,Z,Z,Z,Z,Z,Z)-1,4,7,10,13,16,19,22-octaselenacyclotetracosa-2,5,8,11,14,17,20,23-octaene (24-US-8) (5), and (Z,Z,Z,Z,Z,Z,Z,Z,Z)-1,4,7,10,13,16,19,22,25-nonaselenacycloheptacosa-2,5,8,11,14,17,20,23,26-nonaene (27-US-9) (6), were obtained together with 1,4-diselenin (1) by reacting sodium selenide with cis-dichloroethene in the presence of a phase-transfer catalyst. The crystal structures of 2-5 were determined by X-ray crystallographic analysis. The UV spectra of the selenacrown ethers showed absorption maximums in the range of 251-262 nm, which were assigned to n-->pi transitions. The cyclic voltammograms indicated that the large unsaturated selenacrown ethers were oxidized more easily than the small ones. The thermal reactions of the unsaturated selenacrown ethers afforded 1,4-diselenin (1) along with polymeric materials, whereas 1 was thermally stable even at 100 degrees C. The reactions of 1 or unsaturated selenacrown ethers 2-5 with silver ion yielded various novel silver complexes, Ag(C(4)H(4)Se(2))(CF(3)COO) (7), Ag(C(4)H(4)Se(2))(2)(CF(3)COO) (8), Ag(15-US-5)(CF(3)COO) (9), Ag(5)(18-US-6)(3)(CF(3)COO)(5) (10), Ag(7)(21-US-7)(CF(3)COO)(5) (11), Ag(24-US-8)(2)(CF(3)COO) (12), Ag(2)(24-US-8)(CF(3)COO)(2) (13), Ag(3)(24-US-8)(2)(CF(3)COO)(3) (14), Ag(15-US-5)NO(3) (15), and Ag(21-US-7)BF(4) (16). The stoichiometry for the complexation with silver trifluoroacetate in solution was examined by (1)H NMR measurement. The titration plots of 2 and 5 under the dilution conditions showed a distinct inflection point at the 1/1 metal/macrocycle ratio, whereas the plots of 1 and 3 showed gradual change.  相似文献   

2.
The reactions of 18- and 21-membered unsaturated thiacrown ethers, 18-UT-6 and 21-UT-7, with CF(3)COOAg in acetone afforded novel silver(I) complexes Ag(I)(18-UT-6)(CF(3)COO) and Ag(I)(2)(21-UT-7)(CF(3)COO)(2), respectively. The crystal structure of Ag(I)(18-UT-6)(CF(3)COO) shows that the silver atom occupies the cavity of the 18-UT-6 and the geometry around the silver atom has a distorted five-coordinate square pyramidal arrangement. The crystal structure of Ag(I)(2)(21-UT-7)(CF(3)COO)(2) shows that the two silver atoms and all sulfur atoms are nearly coplanar and the two trifluoroacetate groups are located at the opposite sides of the plane. The stoichiometry for the complexation of 15-UT-5, 18-UT-6, and 21-UT-7 with CF(3)COOAg in solution was examined by (1)H NMR measurement. The titration plots of 15-UT-5 and 21-UT-7 show a distinct inflection point at 1:1 and 2:1 metal/macrocycle ratios, respectively, whereas the plot of 18-UT-6 gradually changes at the range of 1:1 to 2:1. From these results, 15-UT-5 and 21-UT-7 were found to show inclusion selectivity for number of silver ions, respectively, whereas 18-UT-6 showed low selectivity for the inclusion number of metals. Comparison of the oxidation and reduction potentials of the silver(I) complexes with those of free macrocycles and CF(3)COOAg revealed that unsaturated thiacrown ethers become difficult to be oxidized by complexation with CF(3)COOAg, and CF(3)COOAg becomes difficult to be reduced by complexation with unsaturated thiacrown ethers.  相似文献   

3.
The first example of a mononuclear diphosphanidoargentate, bis[bis(trifluoromethyl)phosphanido]argentate, [Ag[P(CF(3))(2)](2)](-), is obtained via the reaction of HP(CF(3))(2) with [Ag(CN)(2)](-) and isolated as its [K(18-crown-6)] salt. When the cyclic phosphane (PCF(3))(4) is reacted with a slight excess of [K(18-crown-6)][Ag[P(CF(3))(2)](2)], selective insertion of one PCF(3) unit into each silver phosphorus bond is observed, which on the basis of NMR spectroscopic evidence suggests the [Ag[P(CF(3))P(CF(3))(2)](2)](-) ion. On treatment of the phosphane complexes [M(CO)(5)PH(CF(3))(2)] (M = Cr, W) with [K(18-crown-6)][Ag(CN)(2)], the analogous trinuclear argentates, [Ag[(micro-P(CF(3))(2))M(CO)(5)](2)](-), are formed. The chromium compound [K(18-crown-6)][Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)] crystallizes in a noncentrosymmetric space group Fdd2 (No. 43), a = 2970.2(6) pm, b = 1584.5(3) pm, c = 1787.0(4), V = 8.410(3) nm(3), Z = 8. The C(2) symmetric anion, [Ag[(micro-P(CF(3))(2))Cr(CO)(5)](2)](-), shows a nearly linear arrangement of the P-Ag-P unit. Although the bis(pentafluorophenyl)phosphanido compound [Ag[P(C(6)F(5))(2)](2)](-) has not been obtained so far, the synthesis of its trinuclear counterpart, [K(18-crown-6)][Ag[(micro-P(C(6)F(5))(2))W(CO)(5)](2)], was successful.  相似文献   

4.
The syntheses and reactivity of seven different ruthenium-based metathesis catalysts are described. Ru(CF3COO)2(PCy3)(=CH-2-(2-PrO)C6H4) (1), Ru(CF3COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (2), and Ru(CF3COO)2(PCy(3))(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5) (3) were prepared via chlorine exchange by reacting RuCl2(PCy3)2(=CH-2-(2-PrO)C6H4), RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4), and RuCl2(PCy3)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5), respectively, with silver trifluoroacetate (Cy =cyclohexyl). In analogy, Ru(CF3CF2COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (4) and Ru(CF3CF2CF2COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (5) were prepared from RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) via reaction with CF3CF2COOAg and CF3CF2CF2COOAg, respectively. Ru(C6F5COO)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (6) and Ru(C6F5O)2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (7) were prepared from RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) via reaction with C6F5COOTl and C6F5OTl, respectively. Supported catalysts Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(PCy3)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5) (8), Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(PCy3)(=CH-2-(2-PrO)C6H4) (9), and Ru(PS-DVB-CH2OOCCF2CF2CF2COO)(CF3COO)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4) (10) were synthesized by reaction of RuCl2(PCy3)(1,3-dimesityldihydroimidazolin-2-ylidene)(=CHC6H5), RuCl2(PCy3)(=CH-2-(2-PrO)C6H4), and RuCl2(1,3-dimesityldihydroimidazolin-2-ylidene)(=CH-2-(2-PrO)C6H4), respectively, with a perfluoroglutaric acid-derivatized poly(styrene-co-divinylbenzene) (PS-DVB) support (silver form). Halogen exchange in PCy3-containing systems had to be carried out in dichloromethane in order to suppress precipitation of AgCl.PCy3. The reactivity of all new catalysts in ring-closing metathesis (RCM) of hindered electron-rich and -poor substrates, respectively, at elevated temperature (45 degrees C) was compared with that of existing systems. Diethyl diallylmalonate (DEDAM, 11), diethyl allyl(2-methylallyl)malonate (12), N,N-diallyl-p-toluenesulfonamide (13), N-benzyl-N-but-1-en-4-ylbut-2-enecarboxylic amide (14), and N-allyl-N-(1-carboxymethyl)but-3-en-1-yl-p-toluenesulfonamide (15) were used as educts. Supported catalysts were prepared with high loadings (2.4, 22.1, and 160 mg of catalyst/g PS-DVB for 8, 9, and 10, respectively). Catalyst 8 showed higher and catalysts 9 and 10 sowed significantly reduced activities in RCM compared to their homogeneous analogues. Thus, with 8, turnover numbers (TONs) up to 4200 were realized in stirred-batch (carousel) RCM experiments. To elucidate the nature of the bound species, catalysts 8-10 were subjected to 13C- and 31P-MAS NMR spectroscopy. These investigations provided evidence for the proposed structures. Leaching of ruthenium into the reaction mixture was low, resulting in ruthenium contents <85 ppb (ng/g) in the final RCM-derived products.  相似文献   

5.
Bridging between silver clusters and polyoxoanion clusters, the first 1D assembly, [Ag(34)(S(t)Bu)(26)(W(6)O(21))(CF(3)COO)](CF(3)COO)·Et(3)N·20CH(3)OH (1), based on POM-templated silver-thiolate nanoclusters featuring a [Ag(34)(S(t)Bu)(26)(CF(3)COO)](7+) shell and a [W(6)O(21)](6-) core is reported. This novel core-shell nanocluster possesses nanoscopic morphology, displays intense deep-blue emission in solution under ambient conditions and also shows special electrochemical properties.  相似文献   

6.
A series of chiral M(6)M'(8) cluster compounds having twelve free carboxylate groups, [M(6)M'(8)(D-pen-N,S)(12)X](5-) (M/M'/X = Pd(II)/Ag(I)/Cl(-) ([1](5-)), Pd(II)/Ag(I)/Br(-) ([2](5-)), Pd(II)/Ag(I)/I(-) ([3](5-)), Ni(II)/Ag(I)/Cl(-) ([4](5-)), Pt(II)/Ag(I)/Cl(-) ([5](5-)), Pd(II)/Cu(I)/Cl(-) ([6](5-)); D-H(2)pen = D-penicillamine), in which six cis-[M(D-pen-N,S)(2)](2-) square-planar units are bound to a [M'(8)X](7+) cubic core through sulfur-bridges, was synthesized by the reactions of cis-[M(D-pen-N,S)(2)](2-) with M' in water in the presence of halide ions. These M(6)M'(8) clusters readily reacted with La(3+) in aqueous buffer to form La(III)(2)M(6)M'(8) heterotrimetallic compounds, La(2)[1](CH(3)COO), La(2)[2](CH(3)COO), La(2)[3](CH(3)COO), La(2)[4](CH(3)COO), La(2)[5](CH(3)COO) and La(2)[6]Cl, in which the M(6)M'(8) cluster units are linked by La(3+) ions through carboxylate groups in a 1?:?2 ratio. While the La(III)(2)M(6)Ag(I)(8) compounds derived from [1](5-), [2](5-), [3](5-), [4](5-) and [5](5-) have a 1D helix supramolecular structure with a right-handedness, the La(III)(2)Pd(II)(6)Cu(I)(8) compound derived from [6](5-) has a 2D sheet-like structure with a triangular grid of the Pd(II)(6)Cu(I)(8) cluster units. When aqueous HCl was added to the reaction solution of [6](5-) and La(3+), another La(III)(2)Pd(II)(6)Cu(I)(8) heterotrimetallic compound, La(2)[6]Cl·HCl, in which the Pd(II)(6)Cu(I)(8) cluster units are linked by La(3+) ions to form a 2D structure with a rectangular grid, was produced. The solid-state structures of these La(III)(2)M(6)M'(8) compounds, determined by single-crystal X-ray crystallography, along with the spectroscopic properties of the M(6)M'(8) cluster compounds in solution, are described.  相似文献   

7.
Five silver(I) double salts containing embedded acetylenediide, [Ag([12]crown-4)(2)][Ag(10)(C(2))(CF(3)CO(2))(9)([12]crown-4)(2)(H(2)O)(3)] x H(2)O (2), [Ag(2)C(2) x 5 AgCF(3)CO(2) x (benzo[15]crown-5) x 2 H(2)O] x 0.5 H(2)O (3), [Ag(4)([18]crown-6)(4)(H(2)O)(3)][Ag(18)(C(2))(3)(CF(3)CO(2))(16)(H(2)O)(2.5)] x 2.5 H(2)O (4), [Ag(2)C(2) x 6 AgC(2)F(5)CO(2) x 2([15]crown-5)](2) (5), and [(Ag(2)C(2))(2) x (AgC(2)F(5)CO(2))(9) x ([18]crown-6)(2) x (H(2)O)(3.5)] x H(2)O (6), have been isolated by varying the types of crown ethers and anions employed. Single-crystal X-ray analysis has shown that complex 2 is composed of winding anionic chains with sandwiched [Ag([12]crown-4)(2)](+) ions accommodated in the concave cavities between them. In 3, silver(I) double cages each sandwiched by a couple of benzo[15]crown-5 ligands are linked by [Ag(2)(CF(3)CO(2))(2)] bridges to form a one-dimensional structure. For 4, an anionic silver column is generated through fusion of two kinds of silver polyhedra (triangulated dodecahedron and bicapped trigonal antiprism), and the charge balance is provided by aqua-ligated [Ag([18]crown-6)](+) ions. Complex 5 is a centrosymmetric hexadecanuclear supermolecule composed of two [(eta(5)-[15]crown-5)(2)(C(2)@Ag(7))(mu-C(2)F(5)CO(2))(5)] moieties connected through a [Ag(2)(C(2)F(5)CO(2))(2)] bridge. Compound 6 is a discrete supermolecule containing an asymmetric (C(2))(2)@Ag(13) cluster core capped by two [18]crown-6 ligands in mu(3)-eta(5) and mu(4)-eta(6) ligation modes.  相似文献   

8.
The coordination chemistry of the multidentate Schiff-base ligands 2,5-bis(3-methylpyrazinyl)-3,4-diaza-2,4-hexadiene (L5) and 2,5-bis(pyrazinyl)-3,4-diaza-2,4-hexadiene (L6) with inorganic Ag(I) salts has been investigated. Six new Ag(I)-coordination polymers were prepared by solution reactions and fully characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffraction. [Ag(L5)]ClO(4).0.5CH(3)OH (1, orthorhombic, Fdd2; a = 20.0896(11) A, b = 48.224(3) A, c = 7.8432(4) A, Z = 16), [Ag(L5)]PF(6).0.5CH(3)OH (2, orthorhombic, Fdd2; a = 20.7255(11) A, b = 46.166(2) A, c = 8.4332(4) A, Z = 16), [Ag(L5)]SbF(6).0.5CH(3)OH (3, orthorhombic, Fdd2; a = 21.5481(11) A, b = 45.196(2) A, c = 8.7331(4) A, Z = 16), and [Ag(L5)](BF(4)).0.5CH(3)OH (4, orthorhombic, Fdd2; a = 19.8897(11) A, b = 48.358(3) A, c = 7.7491(5) A, Z = 16) were obtained by combination of L5 with AgClO(4).xH(2)O, AgPF(6), AgSbF(6), and AgBF(4), respectively, in a methylene chloride/methanol mixed solvent system. Compounds 1-4 are isostructural and feature noninterpenetrating three-dimensional zeolite-like networks. [Ag(4)(L6)(4)](PF(6))(4).CHCl(3) (5, tetragonal, Pc2; a = 16.1067(3) A, b = 16.1067(3) A, c = 14.4935(5) A, Z = 2) was generated from the reaction of L6 with AgPF(6) in a chloroform/ethanol mixed solvent system. It forms with a unique one-dimensional nanometer-tube that can be considered a new polymeric motif based on the [AgN5] coordination sphere. The tubes are square with crystallographic dimensions of 10.3 x 10.0 A. The tubes are further linked together through weak interpolymer C-H...F hydrogen bonding interactions into a novel H-bonded three-dimensional network containing square tubes, in which uncoordinated PF(6)(-) counterions and chloroform guest molecules are located. Compound 6 ([Ag(mu-C(6)H(6)N(2)O)](SO(3)CF(3)), monoclinic, P2(1)/c; a = 12.3435(6) A, b = 20.3548(10) A, c = 9.0861(5) A, Z = 8) was obtained by combination of AgSO(3)CF(3) and L6 in a methylene chloride/benzene mixed solvent system. In 6, 2-acetylpyrazine, which was generated from the hydrolysis reaction of L6 in the presence of CF(3)SO(3)(-) and a small quantity of water in solvent, chelates the Ag(I) centers through the carbonyl O-donor, and the vicinal pyrazine N-donor, furthermore, uses the para-N atoms to link other Ag(I) centers into one-dimensional zigzag chains. The triflate anions link the chains into a three-dimensional network by somewhat long Ag.O contacts.  相似文献   

9.
The synthesis and characterization of nine coordination networks based on 1,3-bis(phenylthio)propane, L(3), and silver(I) salts of PF(6)(-) (1), CF(3)COO(-) (2), CF(3)CF(2)COO(-) (3), CF(3)CF(2)CF(2)COO(-) (4), p-TsO(-) (5, 6), and CF(3)SO(3)(-) (7-9) are reported. Only 1 and other "isostructural" complexes with weakly coordinating anions such as ClO(4)(-) and SbF(6)(-) are of the host-guest type. In all the other complexes, the anions and the acetone molecules, when present, are coordinated to the metal. Most of the complexes studied here form a 2D-coordination network. Only 4 and 5 adopt a polymer-like chain structure. The packing of the chains of 4 is pseudohexagonal compact, while that of 5 is of the centered type. In complex 1, the silver atom is tetrahedrally coordinated to the sulfur atoms of four different ligands. The PF(6)(-) anions and acetone molecules, sandwiched between silver-ligand cationic sheets, are held through van der Waals interactions. In each of the three perfluorocarboxylates (2-4), two silver atoms are joined by the anions in a diatomic bridging mode. The Ag...Ag distances are sufficiently short to indicate weak metal...metal interactions. The dimeric units in 2 and 3 are interconnected through the ligands, thereby generating a 2D-network of neutral sheets, while, in 4, the dimeric units are bound to four ligands and a 1D-coordination polymer is generated. In the case of the sulfonate anions (p-TsO(-) and CF(3)SO(3)(-)), the crystallization solvent influences the structure adopted. Thus, in 5, 7, and 9 obtained from petroleum ether, or other nonpolar solvents, two silver atoms are bound in a double-bridge fashion, while a monobridge mode is noted for 6 and 8, both recrystallized from diethyl ether. In 8, both bridging types are observed. The thermogravimetric investigation, in the room temperature-450 degrees C interval, of complexes 1, 3, and 7, which incorporate acetone molecules in their crystal structures, reveals a two-step weight loss for 1 (the acetone molecules are lost first followed by the ligands, leaving behind the silver salt), while complexes 3 and 7 decompose in a single step to metallic silver.  相似文献   

10.
Dong YB  Geng Y  Ma JP  Huang RQ 《Inorganic chemistry》2005,44(6):1693-1703
One new conjugated symmetric fulvene ligand L1 and two new unsymmetric fulvene ligands L2 and L3 were synthesized. Five new supramolecular complexes, namely Ag2(L1)3(SO3CF3)3 (1) (1, monoclinic, P2(1)/c; a = 12.702(3) A, b = 26.118(7) A, c = 13.998(4) A, beta = 96.063(4) degrees, Z = 4), [Ag(L1)]ClO4 (2) (monoclinic, C2/c; a = 17.363(2) A, b = 13.2794(18) A, c = 13.4884(18) A, beta = 100.292(2) degrees, Z = 8), [Ag(L1)(C6H6)SbF6] x 0.5C6H6 x H2O (3) (monoclinic, P2(1)/c; a = 6.8839(11) A, b = 20.242(3) A, c = 18.934(3) A, beta = 91.994(3) degrees, Z = 4), Ag(L2)(SO3CF3) (4) (triclinic, P1; a = 8.629(3) A, b = 10.915(3) A, c = 11.178(3) A, alpha = 100.978(4) degrees, beta = 91.994(3) degrees, gamma = 105.652(4) degrees, Z = 2), and Ag(L3)(H2O)(SO3CF3) (5) (triclinic, P1; a = 8.914(5) A, b = 10.809(6) A, c = 11.283(6) A, alpha = 69.255(8) degrees, beta = 87.163(9) degrees, gamma = 84.993(8) degrees, Z = 2) were obtained through self-assembly based on these three new fulvene ligands in a benzene/toluene mixed-solvent system. Compounds 1-5 have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The results indicate that the coordination chemistry of new fulvene ligands is versatile. They can adopt either cis- or trans-conformation to bind soft acid Ag(I) ion through not only the terminal -CN and furan functional groups but also the fulvene carbon atoms into organometallic coordination polymers or discrete complexes. In addition, the luminescent properties of L1-L3 and their Ag(I) complexes were investigated preliminarily in EtOH and solid state.  相似文献   

11.
Dong YB  Zhang Q  Wang L  Ma JP  Huang RQ  Shen DZ  Chen DZ 《Inorganic chemistry》2005,44(19):6591-6608
Two new bent oxadiazole bridging benzoacetylene ligands 2,5-bis(4-ethynylphenyl)-1,3,4-oxadiazole (L9) and 2,5-bis(3-ethynylphenyl)-1,3,4-oxadiazole (L10) were synthesized. The coordination chemistry of them with various inorganic Ag(I) salts has been investigated. Seven new coordination polymers were prepared by solution reactions and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. [Ag2(L9)](SO3CF3)2 (1) (triclinic, P; a =10.292(4), b = 10.794(4), c = 11.399(5) A; alpha = 98.894(5), beta = 102.360(6), gamma = 90.319(5) degrees ; Z = 2), [Ag(L9)]SbF6 (2) (orthorhombic, Cmca; a = 19.059(9), b = 12.922(6), c = 15.609(7) A; Z = 8), [Ag(L9)]BF4 (3) (orthorhombic, Cmca; a = 19.128(3), b = 12.6042(18), c = 28.003(4) A; Z = 16), [Ag(L9)]ClO4 (4) (monoclinic, P2(1)/c; a = 8.5153(16), b = 19.722(4), c = 10.320(2) A; beta = 105.307(3) degrees ; Z = 4), [Ag(L10)]SO3CF3 (5) (triclinic, P; a = 9.0605(13), b = 10.4956(15), c = 10.8085(16) A; alpha = 101.666(2), beta = 109.269(2), gamma = 100.944(2) degrees ; Z = 2), [Ag(L10)(H2O)(0.5)]BF4.0.5H2O (6) (monoclinic, C2/m; a = 32.180(6), b = 17.027(3), c = 8.1453(15) A; beta = 102.541(3) degrees ; Z = 8), and {[Ag2(L10)2(H2O)](ClO4)2}.o-xylene (7) (monoclinic, P2(1)/c; a = 8.1460(10), b = 17.326(2), c = 30.345(4) A; beta = 97.71 degrees ; Z = 4) were obtained by the combination of L9 and L10 with various Ag(I) salts in a benzene/methylene chloride mixed solvent system. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

12.
Dong YB  Wang HY  Ma JP  Shen DZ  Huang RQ 《Inorganic chemistry》2005,44(13):4679-4692
Two new bent bis(cyanophenyl)oxadiazole ligands, 2,5-bis(4-cyanophenyl)-1,3,4-oxadiazole (L7) and 2,5-bis(3-cyanophenyl)-1,3,4-oxadiazole (L8), were synthesized. The coordination chemistry of these ligands with various Ag(I) salts has been investigated. Seven new coordination polymers, namely, {[Ag(L7)(H2O)]ClO4}n) (1) (triclinic, P1, a = 9.342(4) A, b = 9.889(4) A, c = 10.512(4) A, alpha = 68.978(6) degrees, beta = 78.217(6) degrees, gamma = 81.851(7) degrees, Z = 2), {[Ag(L7)]SO3CF3}n (2) (monoclinic, P2(1)/n, a = 7.559(2) A, b = 23.739(6) A, c = 10.426(3) A, beta = 108.071(4) degrees, Z = 4), {[Ag(L8)]BF4 x 0.5(C6H6) x H2O}n (3) (triclinic, P1, a = 7.498(3) A, b = 10.649(4) A, c = 13.673(5) A, alpha = 98.602(5) degrees, beta = 100.004(5) degrees, gamma =110.232(5) degrees, Z = 2), {[Ag(L8)SbF6] x H2O}n (4) (triclinic, P1, a = 8.2621(9) A, b = 10.6127(12) A, c = 13.3685(15) A, alpha = 98.012(2) degrees, beta = 106.259(2) degrees, gamma = 112.362(2) degrees, Z = 2), {[Ag2(L8)2(SO3CF3)] x H2O}n (5) (triclinic, P1, a = 10.713(4) A, b = 13.449(5) A, c = 15.423(5) A, alpha = 65.908(5) degrees, beta = 74.231(5) degrees, gamma = 83.255(5) degrees, Z = 2), {[Ag2(L8)(C6H6)(ClO4)] x ClO4}n (6) (monoclinic, P2(1)/n, a = 6.9681(17) A, b = 20.627(5) A, c = 17.437(4) A, beta = 95.880(4) degrees, Z = 4), and {[Ag2(L8)(H2PO4)2]}n (7) (triclinic, P1, a = 7.956(2) A, b = 9.938(3) A, c = 14.242(4) A, alpha = 106.191(4) degrees, beta = 97.322(4) degrees, gamma = 107.392(4) degrees, Z = 1), were obtained by the combination of L7 and L8 with Ag(I) salts in a benzene/methylene chloride mixed-solvent system and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescence and electrical conductance properties of compounds 1-6 and the host-guest chemistry of compound 3 were investigated.  相似文献   

13.
The coordination chemistry of the oxadiazole-containing rigid bidentate ligands 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L1), 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L2), and 2,5-bis(3-aminophenyl)-1,3,4-oxadiazole (L3) with inorganic Ag(I) salts has been investigated. Four new coordination polymers (1, 2, 3, and 5) and one new bimetallic macrocyclic supramolecular complex (4) were synthesized from solution reactions of L1-L3 with inorganic Ag(I) salts, respectively. Compounds [[Ag(L1)]SbF(6)](n) (1) (1, monoclinic, P2(1)/c, a = 6.6846(4) A, b = 27.1113(15) A, c = 8.6802(5) A, beta = 94.1080(10) degrees, Z = 4) and [[Ag(L1)]PF(6)](n) (2) (2, monoclinic, P2(1)/c, a = 6.6753(3) A, b = 27.2824(14) A, c = 8.2932(4) A, beta = 94.6030(10) degrees, Z = 4) were obtained from the reactions of L1 with AgSbF(6) and AgPF(6) in a CH(2)Cl(2)/CH(3)OH mixed solvent system, respectively. Compounds 1 and 2 are isostructural and feature a novel two-dimensional zeolite-like net with two different individual rings. [[Ag(L2)]SbF(6)](n) (3) (3, monoclinic, P2(1)/c, a = 5.5677(3) A, b = 17.3378(9) A, c = 15.6640(8) A, beta = 94.4100(10) degrees, Z = 2) and [Ag(2)(L2)(2)](SbF(6))(2) (4) (4, triclinic, P1, a = 8.7221(5) A, b = 9.2008(6) A, c = 10.7686(7) A, alpha = 70.6270(10) degrees, beta = 75.7670(10) degrees, gamma = 73.7560(10) degrees, Z = 1) were obtained from one-pot reaction of L2 with AgSbF(6) in a CH(2)Cl(2)/CH(3)OH mixed solvent system. Compound 3 features a one-dimensional chain pattern, while compound 4 adopts a novel bimetallic macrocyclic structural motif which consists of Ag(2)(L2)(2) ringlike units (crystallographic dimensions, 8.06 x 7.42 A(2)). [[Ag(L3)]SO(3)CF(3)](n) (5) is generated from L3 and AgSO(3)CF(3) in a CH(2)Cl(2)/CH(3)OH mixed solvent system and crystallizes in the unusual space group Pbcn, with a = 9.8861(5) A, b = 20.2580(10) A, c = 17.5517(8) A, Z = 8. It adopts novel two-dimensional sheets that are cross-linked to each other by strong interlayer N-H...O hydrogen bonding interactions into a novel H-bonded three-dimensional network.  相似文献   

14.
[(3,5-(CF(3))(2)Pz)(AgL)(2)](+)[Ag(5)(3,5-(CF(3))(2)Pz)(6)(CH(3)CN)](-) (L = 2-(N,N-diethylanilino-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine) shows bright and tunable emissions influenced by its supramolecular structure. Columnar stacks are assembled via cooperative interactions that include Ag(I)···Ag(I) argentophilic bonding, π···π stacking and Ag(I)···π interactions.  相似文献   

15.
1INTRODUCTIONInrecentyears,aseriesoflanthanide aluminiumcomplexeswhichareactiveforpoly merizationofolfins〔1〕havebeenreported....  相似文献   

16.
Fourteen metathesis initiators that had been designed for use in the living polymerization of diethyl dipropargylmalonate (DEDPM), including the Hoveyda catalyst [RuCl(2)(IMesH(2))([double bond]CH-2-(2-PrO)[bond]C(6)H(4))] (1 a), as well as [Ru(CF(3)COO)(2)(IMesH(2))([double bond]CH-2-(2-PrO)[bond]C(6)H(4))] (1 b), [Ru(CF(3)CF(2)COO)(2)(IMesH(2))([double bond]CH-2-(2-PrO)[bond]C(6)H(4))] (1 c), [Ru(CF(3)CF(2)CF(2)COO)(2)(IMesH(2))([double bond]CH-2-(2-PrO)[bond]C(6)H(4))] (1 d), [RuCl(2)(IMesH(2))([double bond]CH-2,4,5-(MeO)(3)[bond]C(6)H(2))] (2 a), [Ru(CF(3)COO)(2)(IMesH(2))([double bond]CH-2,4,5-(MeO)(3)[bond]C(6)H(2))] (2 b), [Ru(CF(3)CF(2)COO)(2)(IMesH(2))([double bond]CH-2,4,5-(MeO)(3)[bond]C(6)H(2))] (2 c), [Ru(CF(3)CF(2)CF(2)COO)(2)(IMesH(2))([double bond]CH-2,4,5-(MeO)(3)[bond]C(6)H(2))] (2 d), [RuCl(2)(IMes)([double bond]CH-2-(2-PrO)[bond]C(6)H(4))] (3 a), [Ru(CF(3)COO)(2)(IMes)([double bond]CH-2-(2-PrO)[bond]C(6)H(4))] (3 b), [RuCl(2)(IMesH(2))([double bond]CH-2-(2-PrO)-5-NO(2)[bond]C(6)H(3))] (4 a), [Ru(CF(3)COO)(2)(IMesH(2))([double bond]CH-2-(2-PrO)-5-NO(2)[bond]C(6)H(3))] (4 b), [Ru(CF(3)CF(2)COO)(2)(IMesH(2))([double bond]CH-2-(2-PrO)-5-NO(2)[bond]C(6)H(3))] (4 c), and [Ru(CF(3)CF(2)CF(2)COO)(2)(IMesH(2))([double bond]CH-2-(2-PrO)-5-NO(2)[bond]C(6)H(3))] (4 d) (IMes=1,3-dimesitylimidazol-2-ylidene; IMesH(2)=1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) were prepared. Living polymerization systems could be generated with DEDPM by careful tuning of the electronic nature and steric placement of the ligands. Although 1 a, 2 a, 3 a, 3 b, and 4 a were inactive in the cyclopolymerization of DEDPM, and initiators 1 b-d did not allow any control over molecular weight, initiators 2 b-d and 4 b-d offered access to class VI living polymerization systems. In particular, compounds 2 b and 4 d were superior. The livingness of the systems was demonstrated by linear plots of M(n) versus the number of equivalents of monomer added (N). For initiators 2 b-d and 4 b-d, values for k(p)/k(i) were in the range of 3-7, while 1 b, 1 c, and 1 d showed a k(p)/k(i) ratio of >1000, 80, and 40, respectively. The use of non-degassed solvents did not affect these measurements and underlined the high stability of these initiators. The effective conjugation length (N(eff)) was calculated from the UV/Vis absorption maximum (lambda(max)). The final ruthenium content in the polymers was determined to be 3 ppm.  相似文献   

17.
The 6-, 9-, 12-, 15-, 18-, 21-, 24-, and 27-membered unsaturated thiacrown ethers 1-8 were formed by reaction of cis-1,2-dichloroethylene with sodium sulfide in acetonitrile. Crystal structures of 4-8 were determined by X-ray crystallography, and it was found that all sulfur atoms of 5-8 direct to the inside of the ring (endodentate). All of the ORTEP drawings show that there are cavities in these molecules, and the cavity sizes in 4-8 were 1.76, 2.34, 3.48, 4.43, and 5.36 A, respectively. The UV spectra of 4-8 showed absorption maximums at the range of 255-276 nm in acetonitrile, and the absorption maximums of 4-8 were found to shift to longer wavelengths by changing the solvent from acetonitrile to cyclohexane. The cyclic voltammograms of 4-8 indicate that the larger unsaturated thiacrown ethers were oxidized more easily than the smaller systems, and unsaturated thiacrown ethers were oxidized more easily than corresponding saturated systems. The reaction of 4 with silver trifluoroacetate in acetone afforded the colorless complex Ag(I)(C2H2S)5(CF3COO) 9. The crystal structure of 9 was determined by X-ray analysis, and it was found that three of the five sulfur atoms bonded to the silver atom.  相似文献   

18.
[PrAl(CF3COO)2(CF3CHOO)(C2H5)2(C4H8O)2]2 Mr=1420.56, monoclinic, P21/n, a=10.651(6), b=24.276(9), c=11.110(5)(), β=107.650(4)°, V=2737.4(1)()3, Z=2, Dc=3.45 g/cm3, F(000)=2816, T=233K, MoKα radiation (λ=0.71069()), μ(MoKα)=38.017 cm-1, R=0.048 for 2847 observed reflections (I≥3σ(I)). It is isostructural with [LnAl(CF3COO)2(CF3CHOO)-R2(C4H8O)2]2 (Ln=Ho, R=Et; Ln=Nd, Y, R=iBu). Pr3+ is coordinated by eight oxygen atoms from five bridging ligands and two THF forming a distorted bicap-prism.  相似文献   

19.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

20.
Song  Chao-Yu  Zhang  Jia-Yuan  Qiu  Yuan  Jin  Hai-Ping  Zhang  Hui-Ming  Liu  Shuang  Liu  Hong  Qiu  Hong-Bin  Gao  Guang-Gang 《中国科学:化学(英文版)》2019,62(3):347-354
Science China Chemistry - A totally structure-determined organosilver(I) metal-oganic framework (MOF) of [{Ag18(CF3COO)18(H2O)2}{Ag4(erlotinib)4}]n•7nCH3OH•3nH2O (1) was first...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号