首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

2.
Ro-vibrational spectra of HNCS and DNCS have been obtained in the spectral range 300–4000 cm−1 with a practical resolution limit of 0.06 cm−1 in the region 350–1200 cm−1 and 0.15 cm−1 in the region 1200–4000 cm−1. The observed fine structure permitted definitive assignments for some of the PQK, QQK, and RQK branches in both molecules, and yielded sets of rotational constants in substantial agreement with those obtained from recent microwave and far-infrared studies. Precise estimates of the band origins have been obtained and there is evidence of second-order Coriolis coupling between the three bending modes in each molecule. The isolation of the out-of-plane bending modes has lead to a re-assignment of ν3, ν4, ν5, and ν6 for each molecule. The band origins, uncorrected for Coriolis interaction, are for HNCS and DNCS, respectively. v1:3538.6 ±0.3, 2644.5±0.5cm−1;v2:1989.0 ±0.3, 1944.3±0.5cm−1;v3:857.0 ±0.6, 851.0±0.1cm−1;v4:615.0 ±0.5, 549.1±0.2cm−1;v5:469.2 ±0.1, 365.8 ±0.2cm−1;v6:539.2 ±0.5, 481.0±0.1cm−1;  相似文献   

3.
Oxalyl chloridefluoride (COCl)(COF) exhibits moderately strong discrete absorption in the 3050–3540Å region. The band spectrum has been analyzed as an allowed electronic transition of the planar trans molecule. The most active vibrations are the carbonyl stretching modes ν1′ and ν2′ and the in-plane bending mode ν9. Various other fundamental frequencies in the combining electronic states have been identified. The 000 band is at 28 724.5 cm−1; partial rotational analysis confirms that this band is type C. The appearance of “line” structure in the wings of the band is discussed and an explanation offered. The vibrational and rotational analyses confirm that the transition is under the Cs point group, as expected for a singlet-singlet n → π* type of excitation.  相似文献   

4.
The vibration-rotation bands of all the fundamentals and several overtone and combination vibrations of F12CP have been recorded. The C-F stretching fundamental ν3 was observed in strong Fermi resonance with the overtone 2ν20; a similar resonance was also observed between ν1 + ν3 and ν1 + 2ν10. The spectral analysis gave fundamental wavenumbers: ν1 = 1670.842 (9), ν2 = 375.428 (6), and ν3 = 780.10 (22) cm−1. The value of the equilibrium rotational constant Be was found to be 0.1758943 (81) cm−1. The harmonic force field for this molecule was derived from the wavenumbers of the three fundamentals and the l-doubling constant.  相似文献   

5.
The Fourier transform infrared spectrum of monoisotopic SC80Se has been investigated in the ν2, ν3, 2ν2, 2ν3, and ν1 regions with a resolution between 3 and 4 × 10−3 cm−1. In addition, the millimeter-wave spectrum has been studied in the region 150 to 320 GHz, and ground and ν2 = 1 excited state transitions have been measured. Ground state constants, B0 = 2043.285 4(4) MHz and D0 = 146.53(5) Hz, have been determined from a merge of millimeter-wave data and ground state combination differences spanning J values up to 77 and 143, respectively. The band centers ν2 = 352.341 075(9) cm−1 and ν3 = 505.480 06(5)cm−1 have been determined. The rovibrational parameters of numerous overtone and combination levels (ν1νl22ν3) = 0200, 0220, 0310, 0330, 0400, 0420, 0002, and 0003 have been obtained from polynomial analyses whose standard deviations ranged from 0.7 to 3.5 × 10−4 cm−1. The 1000 level, νeff 1435.840 cm−1, is anharmonically perturbed by the 0400 level, with an avoided crossing at J = 55, and W12222 = 0.963 09(1) cm−1. Transitions to both the upper (E+) and lower (E) sublevels of the dyad were observed for 1 ≤ J′ ≤ 117 and 4 ≤ J′ ≤ 171, respectively, and the deperturbed wavenumbers ν1 = 1435.542 76(2) and 4ν02 = 1432.725 00(3) cm−1 were derived. Furthermore, a local crossing of the E and 0420 levels involving l-type resonance was observed at J = 91.  相似文献   

6.
Studies of five comparatively unperturbed infrared active bands in the spectrum of 10B2D6 were undertaken with a resolution of ca. 0.05 cm−1. These comprise three type-A bands (ν17, ν18, and ν5 + ν15), one type-B band (ν8), and one type-C band (ν14). Ground-state rotational and quartic centrifugal distortion constants were determined for the first time from a total of over 400 combination differences. Sets of upper-state parameters were determined for all five bands studied, and the effects of a number of minor Coriolis interactions between fundamental vibrations are discussed.  相似文献   

7.
The infrared spectrum of the SiH4 molecule has been recorded between 2040 and 2320 cm−1 using the high-resolution Fourier interferometer of the Laboratoire de Photophysique Moléculaire (Orsay, France). The resolution was 5.4 × 10−3 cm−1. In this region, many lines were previously analyzed and assigned to the ν1/ν3 stretching dyad of 28SiH4, 29SiH4, and 30SiH4 molecules [J. Mol. Spectrosc. 143 (1990) 35]. However, several lines in the spectrum were not assigned. The results obtained in our previous study [J. Mol. Spectrosc. 197 (1999) 307] of the infrared spectrum of 28SiH4, in the bending-stretching tetrad region at 3100 cm−1, enabled us to assign 204 of the observed transitions to hot bands (the ν1 + ν2/ν1 + ν4/ν2 + ν3/ν3 + ν4 bending-stretching tetrad minus the ν2/ν4 bending dyad). These transitions were used to refine the set of the Hamiltonian parameters of the bending-stretching tetrad. The analysis is performed using the tensorial formalism developed in Dijon for tetrahedral molecules and implemented in the STDS software (http://www.u-bourgogne.fr/LPUB/shTDS.html).  相似文献   

8.
The microwave spectrum of bullvalene has been investigated in the region 18–40 GHz. In addition to transitions in the ground vibrational state, transitions arising from five excited vibrational states below 600 cm−1 have also been observed. A combination of microwave intensity measurements and infrared and Raman data has been utilized to assign these vibrations. Three of the vibrations are E-type modes at 241, 355, and 588 cm−1. One is an A1-type mode at 445 cm−1, and another is an A2-type at 266 cm−1. The microwave spectrum indicates the presence of a first-order Coriolis interaction for the E modes at 241 and 588 cm−1. The first-order Coriolis coupling constant q = 0.557 MHz for the 241 cm−1 vibration. The spectral results are consistent with C3v symmetry for bullvalene.  相似文献   

9.
The far-infrared spectrum of acrolein, CH2CHCHO, is studied in the 100–360 cm−1 region using continuum radiation from a synchrotron source. The combination of a very high resolution spectrometer, a long absorption path, and a low sample pressure, yields observed line widths of less than 0.0008 cm−1. Observation of the ν18 (157.9 cm−1), and ν13 (323.8 cm−1) fundamental bands, together with six hot bands in the same regions, gives information on eight low-lying vibrational states of the molecule, including the Fermi and Coriolis interactions among them. Combining the present assignments with previous data on the ν12 (564.34 cm−1) and ν17 (593.08 cm−1) fundamental bands, all ten excited vibrational levels below 700 cm−1 are analyzed in terms of one 1-state fit, two 2-state fits, and one 5-state fit.  相似文献   

10.
The ν4 band of silane has been recorded with a resolution of about 0.06 cm−1 in the region from 850 to 950 cm−1. Assignments of all allowed transitions in this range with J′ ≤ 12 have been made on the basis of frequency and relative intensity. Qualitative agreement with theory is good but quantitative agreement begins to break down above J′ = 8. The breakdown is attributed to the effects of the strong Coriolis interaction with nearby ν2.Lines of 29SiH4 and 30SiH4 have been observed in the R branch with constant isotope shifts of −1.334 cm−1 and −2.600 cm−1.  相似文献   

11.
The infrared spectrum of carbon suboxide, C3O2, was measured at high resolution in the region from 500 to 600 cm−1. The spectrum was recorded with a Bomem interferometer at a resolution of about 0.004 cm−1; after deconvolution a resolution of about 0.002 cm−1 was attained. Seven bands were identified and assigned to rovibrational transitions of 12C316O2. These consist of the ν6 fundamental band and some of the hot bands associated with the ν7, 2ν7, and 3ν7 states. The data obtained on the ν6 + 7 states were used as input for a semirigid bender fit yielding the effective CCC bending potential energy function in the ν6 state together with a number of related parameters. From the results of the present work together with the results of previous semirigid bender fits it was found that C3O2 is bent at equilibrium with an equilibrium CCC bond angle of 156° and a barrier to linearity of 28 cm−1.  相似文献   

12.
The ν3 mode of T2O, observed at 0.04 cm−1, has been analyzed. By an iterative process of fitting and assignment 210 lines were assigned; 167 of these were used in the final fitting. The standard deviation of the fit is 0.023 cm−1. The rotational constants, A, B, and C, as well as the quartic distortion constants, have been evaluated for the excited state.  相似文献   

13.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

14.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

15.
High resolution Fourier transform spectra of deuterated hydrogen sulfide have been recorded in the region 2400-3000 cm−1. Rotational structures of the ν1 + ν2, ν2 + ν3 bands of D232S, of the ν3 and ν1 + ν2 bands of HD32S, and of the ν1 + ν2 band of HD34S were analyzed. Band centers and rotational, centrifugal distortion, and resonance parameters were obtained, which reproduce the initial values of the upper energy levels within a mean accuracy of 1.39 × 10−4 cm−1 for the states (110) and (011) of D232S, 1.61 × 10−4 cm−1 and 1.82 × 10−4 cm−1 for the states (001) and (110) of HD32S, and 2.09 × 10−4 cm−1 for the state (110) of HD34S, respectively.  相似文献   

16.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

17.
The gas-phase infrared spectrum of CH3CD3 in the region of the perpendicular C---H stretching band, ν7, near 3000 cm−1 has been studied under a spectral resolution of 0.025 cm−1, increased to 0.015 cm−1 by deconvolution. An assignment of lines in the subbands KΔK = +15 to −3 is proposed, and their upper-state constants are reported. The interpretation of the effective rotational constants of the individual subbands is complicated by a strong perturbation.  相似文献   

18.
The electronic spectrum of gas-phase tellurium dioxide has been recorded between 345 and 406 nm using the technique of laser-induced fluorescence spectroscopy. The TeO2 sample was prepared by direct heating of the solid and by seeding it in a continuous free-jet expansion in argon. Twenty-seven cold bands and thirty-two hot bands were assigned. The wavenumbers of the band origin and symmetric stretching and bending vibrational modes for the upper and lower states were determined in a simple least-squares fit: ν0 = 25526 cm−1, ω1 = 679 cm−1, ω2 = 220 cm−1, ω1 = 823 cm−1, ω2 = 282 cm−1.  相似文献   

19.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

20.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号