首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterogeneous bis(cyclopentadienyl)zirconium(IV) dichloride catalyst of the composition MgCl2(THF)/(AlEt2Cl)0.34/(Cp2ZrCl2)0.01 as determined by FTIR, XRD, and AAS analyses was synthesised and, after activation by MAO, applied for ethylene polymerisation. The catalyst turned out to be stable and more active than those magnesium supported catalysts already known from the literature. The polyethylene produced has a relatively high molecular weight (Mw > 200,000 g/mol), a narrow and monomodal molecular weight distribution (MWD = 2.4), a bulk density of about 180 g/dm3, and monomodal particle size distribution. Application of a ternary Al(i-Bu)3/MAO/B(C6F5)3 activator decreased the amount of MAO needed and increased catalyst activity, but did not change the reaction mechanism.  相似文献   

2.
用Xα方法计算了Ni(C5H5)2的电子能级与归一化电荷,讨论了夹心化合物成键的特点,并用过渡态方法分析Ni(C5H5)2的光电子能谱及紫外可见吸收光谱,结果与实验相符。  相似文献   

3.
The catalytic system (C5H5)2TiEtCl-AlEtCl2 in benzene and heptane was investigated. Only two species are formed at an equimolar ratio Al: Ti, viz. active (C5H5)2TiEtCl.AlEtCl2 (I) and inactive (C5H5)2TiCl.AlEtCl2 formed from (I). The rate constant of propagation is kp20° = 6.4 l/mole sec and is independent of the medium. The rate of polymerization decreases with time because of valence reduction. The bimolecular law is obeyed during a run but the apparent termination constant is inversely proportional to the initial catalyst concentration. The kinetic data with different ratios Al:Ti and the dependence of the number of polymer molecules/Ti atom show that AlEtCl2 is a termination agent and a chain transfer agent.  相似文献   

4.
We report a new synthesis and characterization of Ir(C2H4)2(C5H7O2) [(acetylacetonato)-bis(η2-ethene)iridium(I)], prepared from (NH4)3IrCl6 · H2O in a yield of about 45%. The compound has been characterized by X-ray diffraction crystallography, infrared, Raman, and NMR spectroscopies and calculations at the level of density functional theory. Ir(C2H4)2(C5H7O2) is isostructural with Rh(C2H4)2(C5H7O2), but there is a substantial difference in the ethylene binding energies, with Ir-ethylene having a stronger interaction than Rh-ethylene; two ethylenes are bound to Ir with a binding energy of 94 kcal/mol and to Rh with a binding energy of 70 kcal/mol.  相似文献   

5.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

6.
The reactions of the metallocene dichlorides [(η5-C5H5)2MCl2], M = Ti and Zr, with the 1,4-di-tert-butyl-1,4-diazabuta-1,3-diene radical anion (lithium complex) in diethyl ether reveal a reactivity difference within the series, yielding [(C5H5)TiCl{(t-BuNCH)2}] and [(C5H5)2Zr{(t-BuNCH)2}] through the elimination of Li(C5H5) and/or LiCl, respectively. We report the X-ray crystal structures of these complexes, and discuss their reactivity patterns and solution fluxional properties.  相似文献   

7.
The reaction of (Cp = η5-C5Me5) with [Pd(DBA)2] (DBA = dibenzylidenacetone) and dppm (bis(diphenylphosphanyl)methane) gave the new tetratelluropalladate cluster (1), which has been characterised by means of elemental analysis, FD-MS and X-ray crystallography. The structure of compound 1 contains a planar PdTe4 rectangle to which two niobocene groups are coordinated. DFT calculations on the hypothetical [PdTe4]2− anion and comparison of the results with those of the W and Ni homologues show that the planar arrangement of Te ligands in 1 is due to the intrinsic property of the central Pd atom.  相似文献   

8.
C5Me5Rh(L)P2Me4 (L = CO, C2H4) reacts with [C5Me5Rh(μ-CO)]2, to give the trinuclear complexes C5Me5(L)Rh(μ-P2Me4)RhC5Me5(μ-CO)2RhC5Me5 (VI, VII). In the reactions of C5Me5Rh(CO)P2Me4 with C5H5(CO)2 (M = Rh, Co) and C5H4RMn(CO)3 (R = H, Me), the homo- and hetero-metallic binuclear compounds C5Me5(CO)Rh(μ-P2Me4)M(CO)C5H5 (VIII, IX) and C5Me5(CO)Rh(μ-P2Me4)Mn(CO)2C5H4R (X, XI) are obtained in almost quantitative yield. The X-ray structure of the complex C5Me5[P(OMe)3]Rh(μ-CO)2RhC5Me5 (III), which is structurally related to VI and VII, has been determined. The molecule contains an unsymmetrical, non-planar Rh2C2-skeleton with different Rh-C(O) bond lengths. The Rh-Rh distance is 268.5(1) pm; the planes of the two five-membered rings form an angle of 62.6°.  相似文献   

9.
(CpCH_2CH_2CH = CH_2)_2MCl_2(M=Zr, Hf)/MAO and Cp_2ZrCl_2/MAO (Cp=cyclopentadienyl; MAO=methylaluminoxane) catalyst systems have been compared for ethylene copolymerization to investigate the influence of theligand and transition metal on the polymerization activity and copolymer properties. For both CH_2CH_2CH=CH_2 substitutedcatalysts the catalytic activity decreased with increasing propene concentration in the feed. The activity of the hafnocenecatalyst was 6~8 times lower than that of the analogous zirconocene catalyst, ~(13)C NMR analysis showed that the copolymerobtained using the unsubstituted catalyst Cp_2ZrCl_2 has greater incorporatien of propene than those produced byCH_2CH_2CH=CH_2 substituted Zr and Hf catalysts. The melting point, crystallinity and the viscosity-average molecularweight of the copolymer decreased with an increase of propenc concentration in the feed. Both CH_2CH_2CH= CH_2 substitutedZr and Hf catalysts exhibit little or no difference in the melting point and crystallinity of the produced copolymers. However,there are significant differences between the two zirconocene catalysts. The copolymer produced by Cp_2ZrCl_2 catalyst havemuch lower T_m and X_c than those obtained with the (CpCH_2CH_2CH=CH_2)_2ZrCl_2 catalyst. The density and molecular weightof the copolymer decreased in the order: (CpCH_2CH_2CH=CH_2)_2HfCl_2>(CpCH_2CH_2CH=CH_2)_2ZrCl_2>Cp_2ZrCl_2. The kineticbehavior of copolymerizaton with Hf catalyst was found to be different from that with Zr catalyst.  相似文献   

10.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

11.
The synthesis of the new cyclopentadiene, C5Me4(hex)H is described and its reaction with Ru3(CO)12 to yield (C5Me4hex)2Ru2(CO)4 (hex = n-hexyl) is reported. The X-ray crystal structure of the dimer confirms the structure with bridging and terminal CO groups. Reactions of the dimer to yield (C5Me4hex)Ru(CO)2X (X = Cl, Br, I) are reported. IR, NMR and mass spectra are reported for all new compounds. The solubility of the dimer is found to be 10 times greater than that for (C5Me5)2Ru2(CO)4.  相似文献   

12.
A procedure was developed for the synthesis of trinuclear cyclic (ZrIII)2—Al hydrides [(Cp2Zr)2(μ-H)](μ-H)2AlX2 (X = Cl (1a) or Br (1b)). These complexes were prepared in 60–65% yields by the reaction of Cp2ZrX2 with LiAlH4 in the presence of CoBr2 and tolane. The structures of complexes 1a and 1b and iodide 1c (X = I) were studied by NMR spectroscopy in solvents of different basicities (toluene, THF, and pyridine). Complex 1a is unsolvated and monomeric in all solvents; complex 1b, in toluene and THF; complex 1c, in toluene only. At room temperature, complex 1a does not catalyze hydrogenation of hex-1-ene and does not react with tolane, but reacts with the latter at high temperature to give bis(η5-cyclopentadienyl)-2,3,4,5-tetraphenylzirconacyclopentadiene. The reaction of equivalent amounts of complex 1a and HCl produces the [(Cp2Zr)2(μ-Cl)](μ-H)2AlCl2 complex. The structure of the latter was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2418–2423, November, 2005.  相似文献   

13.
以优化的两步一锅反应法合成了生物金属有机化合物Fe(C_5H_4-CH_2-Trp-OMe)2(Fc L),通过NMR、HRMS及IR等对其结构进行了表征,利用X射线单晶衍射测定了分子结构。循环伏安法研究表明Fc L在0.00~0.90 V电位范围内,给出一稳定的、形态良好的氧化还原峰,这归于化合物中Fc/Fc+电对的氧化还原过程。电化学金属离子识别研究显示FcL在过渡金属离子Zn~(2+)和Cu~(2+)的存在下,导致了配体Fc/Fc+式量电位的显著阳极移动,其ΔE0′对Zn~(2+)和Cu~(2+)分别为342和335 m V,表明了Fc L对Zn~(2+)和Cu~(2+)具有良好的识别能力。  相似文献   

14.
摘要: 以优化的两步一锅反应法合成了生物金属有机化合物Fe(C5H4-CH2-Trp-OMe)2FcL),通过NMR、HRMS及IR等对其结构进行了表征,利用X射线单晶衍射测定了分子结构。循环伏安法研究表明FcL在0.00~0.90 V电位范围内,给出一稳定的、形态良好的氧化还原峰,这归于化合物中Fc/Fc+电对的氧化还原过程。电化学金属离子识别研究显示FcL在过渡金属离子Zn2+和Cu2+的存在下,导致了配体Fc/Fc+式量电位的显著阳极移动,其△E0''对Zn2+和Cu2+分别为342和335 mV,表明了FcL对Zn2+和Cu2+具有良好的识别能力。  相似文献   

15.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

16.
[C5Me5Rh(μ-co)]2 reacts with phosphines (PMe2H, PMe3) and trimethylphosphite to give the binuclear complexes C5Me5(L)Rh(μ-CO)2RhC5Me5 which have been characterised by elemental analyses, mass spectra,1H and 31P NMR data. They are surprisingly inert toward an excess of L and do not react to give the mononuclear compounds C5Me5Rh(CO)L. These are obtained in good yields from C5Me5Rh(CO)2 and L where L is PMe2H, P(OMe)3, PEt3, P(OEt)3 and PMe2Ph.  相似文献   

17.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

18.
The reductive reactivity of the (BPh4)1− ligand in pentamethylcyclopentadienyl [(C5Me5)2U][(μ-η21-Ph)2BPh2] (1) was compared with that of the tetramethyl analog, [(C5Me4H)2U][(μ-η61-Ph)(μ-η11-Ph)BPh2] (2) using PhSSPh as a probe to determine if the mode of (BPh4)1− bonding affected the reduction. Both complexes act as two-electron reductants to form (C5Me4R)2U(SPh)2 [R = Me, 3; H, 4], but only in the R = H case could the product be crystallographically characterized. An improved synthesis of 1 from [(C5Me5)2UH]2 (5) and [Et3NH][BPh4] is also reported as well as its reaction with MeCN that provides another route to the unusual, parallel-ring, uranium metallocene [(C5Me5)2U(NCMe)5][BPh4]2 (6).  相似文献   

19.
Copolymerization of ethylene with styrene using linked cyclopentadienyl-amide titanium(IV) complexes, [Me2Si(C5Me4)(R)]TiCl2 [R=tert-Bu (1), cyclohexyl (2)], and non-bridged (1,3-Me2C5H3)TiCl2(O-2,6-iPr2C6H3) (3)-MAO catalysts have been explored. Although the catalytic activity by 2 was lower than 1, 2 showed more efficient styrene incorporation than 1 under the same conditions. Moreover, the resultant copolymer prepared by 2 possessed completely different microstructure from those by 1, indicating that the nature of amide ligand affects both styrene incorporation and monomer sequence.  相似文献   

20.
Density functional theory was used to study gas-phase reactions between the Cp2*ZrMe+ cations, where Cp* = C5H5 (1), Me5Cp = C5Me5 (2), and Flu = C13H9 (3), and the ethylene molecule, Cp2*ZrMe+ + C2H4 → Cp2*ZrPr+ → Cp2*ZrAllyl+ + H2. The reactivity of the Cp2*ZrMe+ cations with respect to the ethylene molecule decreased in the series 1 > 32. Substitution in the Cp ring decreased the reactivity of the Cp2*ZrMe+ cations toward ethylene, in agreement with the experimental data on the comparative reactivities of complexes 1 and 3. The two main energy barriers along the reaction path (the formation of the C-C bond leading to the primary product Cp2*ZrPr+ and hydride shift leading to the secondary product Cp2*Zr(H2)Allyl+) vary in opposite directions in the series of the compounds studied. For Flu (3), these barriers are close to each other, and for the other compounds, the formation of the C-C bond requires the overcoming of a higher energy barrier. A comparison of the results obtained with the data on the activity of zirconocene catalysts in real catalytic systems for the polymerization of ethylene led us to conclude that the properties of the catalytic center changed drastically in the passage from the model reaction in the gas phase to real catalytic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号