首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of cellulose molecules in aqueous environments   总被引:2,自引:0,他引:2  
Molecular motions of cellulose chains in aqueous environments were investigated by comparison with those in non-aqueous environments using molecular simulation techniques. The cellulose chains under non-aqueous conditions approached each other closely and then made tight aggregates that were formed by direct hydrogen bonding. Those in aqueous environments, such as in a bio-system, were separated from each other by water molecules and did not have direct hydrogen bonding between the cellulose chain molecules. Folded-chain structures were not found in either aqueous or non-aqueous environments that were somewhat crowded. In the aqueous system, the water molecules around the cellulose chains restricted their molecular motions and interrupted formation of direct, interchain hydrogen bonds. In the non-aqueous system, the cellulose chains approached each other closely and then made a tight cluster before the chain molecules could wind and bend. It was concluded that a very dilute solution of cellulose molecules in appropriate solvents is necessary to create folded-chain or random-coiled structures. We also confirmed that the driving force for making tight clusters of cellulose molecules in highly concentrated solutions is the energy of the hydrogen bonding created directly between the hydroxyl groups of the cellulose chains. These results strongly suggest that hydrogen bonding plays a very important role in the characteristics of cellulose molecules.  相似文献   

2.
The effect of the mobility of ligands (maltose groups) in the polyrotaxanes (pRXs) on the structure of the surrounding water molecules was investigated. Raman spectra of collective OH stretching vibration of water molecules in aqueous solutions of maltose-pRX conjugates with different alpha-cyclodextrin (alpha-CD) threading on a poly(ethylene glycol) (PEG) chain was measured. The mobility of maltose groups was estimated by measuring the relaxation time T2 of the C1 protons in maltose groups bound on alpha-CD by NMR experiment. A positive correlation between the Raman intensity of the collective band and the relaxation time T2 was obtained. This result indicates that the degree of order of the water clusters is higher as the mobility of maltose groups increases in these conjugate solutions. It is suggested that rapid motion of maltose groups in the pRX conjugate can contribute to preserving ordered structure of the bulk water clusters.  相似文献   

3.
Various polyrotaxane modification reactions, such as methylation, hydroxy propylation, tritylation, acetylation, trimethylsilylation, phenylcarbamation, dansylation, and nitration, were examined to obtain polyrotaxane derivatives, in which various functional groups were attached to cyclodextrin moieties. Although the nitrate could not be obtained because of significant degradation of the polyrotaxane under the conditions examined, other derivatives were successfully prepared under moderate conditions. The introduction of these functional groups and their degree of substitution were assessed with Fourier transform infrared and NMR spectroscopy. The polyrotaxane derivatives thus obtained were soluble in various organic solvents other than the conventional solvents (dimethyl sulfoxide and aqueous NaOH) used for the unmodified polyrotaxane. That is, the solubility of the polyrotaxane was drastically changed by the examined modification reactions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6312–6323, 2006  相似文献   

4.
Solvation of dicarboxylate dianions of varying length of the aliphatic chain in water clusters and in extended aqueous slabs was investigated using photoelectron spectroscopy and molecular dynamics simulations. Photoelectron spectra of hydrated succinate, adipate, and tetradecandioic dianions with up to 20 water molecules were obtained. Even-odd effects were observed as a result of the alternate solvation mode of the two negative charges with increasing solvent numbers. The competition between hydrophilic interactions of the charged carboxylate groups and hydrophobic interactions of the aliphatic chain leads to conformation changes in large water clusters containing dicarboxylates bigger than adipate. It also leads to a transition from bulk aqueous solvation of small dicarboxylates to solvation at the water/vapor interface of the larger ones. Whereas oxalate and adipate solvate in the inner parts of the aqueous slab, suberate and longer dicarboxylate dianions have a strong propensity to the surface. This transition also has consequences for the folding of the flexible aliphatic chain and for the structure of aqueous solvation shells around the dianions.  相似文献   

5.
A subset of mechanically interlocked molecules, namely, donor-acceptor [2]catenanes, have been produced in aqueous solutions in good yields from readily available precursors. The catenations are templated by strong hydrophobic and [π···π] stacking interactions, which serve to assemble the corresponding supramolecular precursors, prior to postassembly covalent modification. Dynamic (1)H NMR spectroscopic investigations performed on one of these [2]catenanes reveal that the pirouetting motion of the butadiyne-triethylene glycol chain occurs with a dramatically lower activation enthalpy, yet with a much higher negative activation entropy in water, compared to organic solvents. The preparations of mechanically interlocked molecules in water constitute the basis for the future development of complex functional molecular machinery in aqueous environments.  相似文献   

6.
Property data for tetraalkylammonium cations, [H(CH2) n ]4N+, are reviewed. They pertain to the isolated cations and their transfer from the gas phase into aqueous solutions. Various properties of these cations in aqueous and non-aqueous solutions and data for their transfer between these are also reviewed. Emphasis is placed on the dependence of data on the length n of the alkyl chains rather than on the absolute values. Most of the data are available only for the first four members of the series. The properties of the isolated ions increase linearly with the chain length. Molar enthalpies of formation of the gaseous and aqueous cations, and absolute standard molar enthalpies of hydration, are derived. Standard molar entropies of dissolution of several salts in water are obtained from their solubilities and enthalpies of solution. The molar entropies of the crystalline iodides of the first four members of the series then give the standard partial molar entropies of the aqueous cations and their molar entropies of hydration. The standard partial molar volumes in aqueous and non-aqueous solutions are quite linear with n and in non-aqueous solutions the molar volume hardly depends on the nature of the solvent. On transfer from water to non-aqueous solvents the volume of Me4N+ suffers some shrinkage, that of Et4N+ appears to be unaffected, but from Pr4N+ onwards an increasing expansion takes place. This unexpected result is tentatively explained by hydrophobic intra-molecular association of pairs of alkyl chains in aqueous solutions, resulting in a tightening of the structure. The transfer of the R4N+ cations from water into non-aqueous solvents is governed by a large positive entropy change, outweighing the smaller positive enthalpy change. The transport properties of the aqueous R4N+ cations are non-linear with n. A major impediment to movement is thus the sticking of the water molecules to the ice-like hydrophobic hydration sheaths of the larger cations. The number of water molecules affected by the hydrophobic cations is open to widely differing estimates resulting from various approaches, and constitute an open issue.  相似文献   

7.
Thermoreversible gelation and microphase formation of aqueous solutions of a methylated polyrotaxane (MePR) were investigated by means of differential scanning microcalorimetry, rheometry, and X-ray diffractometry (XRD). The aqueous solutions of MePR show a lower critical solution temperature (LCST) and form an elastic gel with increasing temperature. The sol-gel transition of the MePR solutions was induced by formation and deformation of aggregates of methylated alpha-cyclodextrins (alpha-CDs) of polyrotaxane due to hydrophobic dehydration and hydration, respectively. The XRD investigation revealed localization and highly ordered arrangement of methylated alpha-CDs along the PEG chain in the gel. The arrangement of CDs was also reflected by the changes in elasticity and long relaxation behavior of the solution around the sol-gel transition. The quasiequilibrium shear modulus of MePR solutions showed the critical phenomena against temperature. The scaling exponents measured at two different concentrations were almost equal to the values predicted by a gel percolation theory. Therefore, the heat-induced gelation of aqueous MePR solutions is well explained by a model in which clusters assembled with methylated alpha-CDs are gradually connected to the network as the temperature increases.  相似文献   

8.
The EPR spectrum of 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO) has been systematically investigated in several solvents and in aqueous solutions of glycerol,t-BuOH, Bu4NBr,n-HexNH3Br,n-OctNH3Br, NaBPh4, and Ph4AsCl. Most of the results have been obtained at 25°C, though the temperature dependence of the linewidths has been examined in water and several organic solvents. Data on the spectrum of ditertiarybutylnitroxide in aqueous solutions of glycerol and Bu4NBr are also presented. The spectrum was simulated to determine WH, the linewidth after allowance for the unresolved proton hyperfine interaction, in each manifold of the triplet due to the nitrogen hyperfine interaction. The linewidth WH is analyzed in terms of the reorientational correlation time Äθ and the angular velocity correlation time ÄJ. In most solutions Äθ is determined only by the bulk solution viscosity, except in situations where significant clustering of hydrophobic solute molecules occurs. In pure nonaqueous solvents the temperature dependence results are consistent with ÄJ being determined by the bulk viscosity, while in water or aqueous solutions, a very different behavior is found which is interpreted as a manifestation of clathrate-like hydration of the hydrophobic radical. This interpretation is incorporated in a two-state model developed to account for the WH data of TEMPO in aqueous solutions of various hydrophobic solutes. The equilibrium parameters derived from the model, for the association of TEMPO with several hydrophobic solutes, support the concept of hydrophobic interactions as pictured from thermodynamic excess functions.  相似文献   

9.
We have conducted extensive molecular dynamics simulations to study the single particle and collective dynamics of water in solutions of N-acetyl-glycine-methylamide, a model hydrophilic protein backbone, and N-acetyl-leucine-methylamide, a model (amphiphilic) hydrophobic peptide, as a function of peptide concentration. Various analytical models commonly used in the analysis of incoherent quasielastic neutron scattering (QENS), are tested against the translational and rotational intermediate scattering function, the mean square displacement of the water molecule center of mass, and fits to the second-order rotational correlation function of water evaluated directly from the simulation data. We find that while the agreement between the model-free analysis and analytical QENS models is quantitatively poor, the qualitative feature of dynamical heterogeneity due to caging is captured well by all approaches. The center of mass collective and single particle intermediate scattering functions of water calculated for these peptide solutions show that the crossover from collective to single particle-dominated motions occurs at a higher value of Q for high concentration solutions relative to low concentration because of the greater restriction in movement of water molecules due to confinement. Finally, we have shown that at the same level of confinement of the two peptides, the aqueous amphiphilic amino acid solution shows the strongest deviation between single particle and collective dynamics relative to the hydrophilic amino acid, indicating that chemical heterogeneity induces even greater spatial heterogeneity in the water dynamics.  相似文献   

10.
Stimuli-responsive nanocarriers offer favorable properties for the target-specific delivery of drugs. Herein, we employed photoirradiation as an external stimulus for the construction of a molecular system that encapsulated small molecules, which were released upon photoirradiation. These nanocarriers consisted of DNA amphiphiles (ODAz 1), in which an oligodeoxynucleotide and an alkyl chain were employed as the hydrophilic and hydrophobic parts, respectively, and these two parts were linked by a photochromic azobenzene unit. In aqueous solutions, ODAz 1 formed nanosized aggregates that encapsulated hydrophobic molecules in their hydrophobic core. Photoirradiation induced isomerization of the azobenzene unit led to changes in aggregate size and the immediate release of the molecules. The aggregate smoothly penetrated the cell membrane, and the photochemical release and delivery of small molecules into living cells were achieved. Thus, ODAz 1 aggregates represent promising photosensitive nanocarriers that may be applicable to drug delivery and targeting.  相似文献   

11.
The structures of Nafion membranes prepared by solutions casting from low aliphatic alcohols/water mixture solvents and N,N′‐dimethyl formamide (DMF) solvent were investigated using differential scanning calorimeter and small angle X‐ray scattering. The aggregation behavior of Nafion molecules in the casting solutions was also investigated using dynamic light scattering. We show that the morphology of membranes was strongly influenced by the conformations of Nafion molecules in the solutions. In aliphatic alcohol/water mixture solvents, which have a worse compatibility with Nafion backbones, the Nafion molecules aggregate and form fringed rod‐like structures. These primary rod‐like structures then aggregate again through fringed side chains to form secondary ionic aggregations. In DMF solvent, owing to its better compatibility with Nafion backbones, less Nafion molecules aggregate. The high degree of Nafion molecular aggregations in aliphatic alcohol/water mixture solvents leads to a high degree of hydrophobic and hydrophilic phase separation for membranes prepared by casting from Nafion/aliphatic alcohol/water solutions. However, the lower degree of molecular aggregations in DMF solvent results in a lower degree of hydrophobic and hydrophilic phase separation for membranes prepared by casting from Nafion/DMF solution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3044–3057, 2005  相似文献   

12.
Jang K  Miura K  Koyama Y  Takata T 《Organic letters》2012,14(12):3088-3091
A catalyst- and solvent-free synthesis of cyclodextrin-based polyrotaxanes exploiting a stable nitrile N-oxide as an end-capping agent was achieved. The C-C bond-forming end-capping reaction of an allyl-terminated pseudopolyrotaxane with the nitrile N-oxide proceeded smoothly by solid-state grinding in a mortar to afford a polyrotaxane.  相似文献   

13.
The enthalpies of solutions of tetraethylammonium and tetrabutylammonium bromides in the water-rich region of the water–acetone and water–hexamethyl phosphoric triamide mixed solvents have been measured at 25°C using a precise calorimetry system. The enthalpies of electrolyte solutions at infinite dilution were calculated using the Debye–Hückel theory. The enthalpies of solute transfer from water to the mixtures with acetone and hexamethyl phosphoric triamide were calculated. The enthalpy coefficients of solute–pair interactions with hexamethyl phosphoric triamide and acetone in aqueous solution were obtained using the McMillan–Mayer formalism. The values obtained were compared with those for other organic cosolvents. It was found that in aqueous solution the solutes show a strong tendency for hydrophobic interaction with cosolvent molecules, particularly in the water–hexamethyl phosphoric triamide system.  相似文献   

14.
The surface active properties of aqueous solutions of invertible amphiphilic alternated polyesters differing by hydrophilic-lipophilic balance (HLB) and molecular weight have been determined over the wide concentration range. The polyesters are based on poly(ethylene glycol) (PEG) of two molecular weights and aliphatic dicarboxylic acids (decanedioic and dodecanedioic). The surface activity of the polyesters and their ability to form micellar assemblies (which was recently shown for organic solvents) has been confirmed in water. The central role of the balance of hydrophilic to hydrophobic groups ratio in the formation of polymeric arrangements having hydrophobic pockets and external hydrophilic shell has been shown. The effect of molecular weight has been found considerable as well. Two changes in slope have been observed for the more hydrophobic polyesters in the surface tension vs log concentration curve. The change at low concentration is believed to originate from the formation of polyester assemblies with a hydrophobic interior and hydrophilic exterior due to the interaction of hydrophobic fragments and macromolecular flexibility. The higher concentration region exhibits behavior consistent with a cmc, which was confirmed by additional dye solubilization experiments. Molecular structure of the polyester micelles is determined by the solubilization of a solvatochromic dye. The experiment confirmed that micellization of polyesters is accompanied by the association of more hydrophobic (aliphatic) constituents forming the micelle interior. The hydrophilic fragments (ethylene oxide groups) are involved in the formation of micelle exterior.  相似文献   

15.
An aldopyranoside-based gelators (dodecanoyl-p-aminophenyl-beta-D-aldopyranoside)s and [1,12-dodecanedicarboxylic-bis(p-aminophenyl-beta-D-aldopyranoside)]s 1-4 were synthesized, and their gelation ability was evaluated in organic solvents and water. Simple aldopyranoside amphiphiles 1 and 2 were found to gelate organic solvents as well as water in the presence of a small amount of alcoholic solvents. More interestingly, not only extremely dilute aqueous solutions (0.05 wt%) of the bolaamphiphiles 3 and 4, but solutions of 3 and 4 in several organic solvents could be gelatinized. These results indicate that 1-4 can act as versatile amphiphilic gelators. We characterized the superstructures of the aqueous gels and organogels prepared from 1-4 using SEM, TEM, NMR and IR spectroscopy, and XRD. The aqueous gels 1 and 2 formed a three-dimensional network of puckered fibrils diameters in the range 20-200 nm, whereas the aqueous gels 3 and 4 produced filmlike lamellar structures with 50-100 nm thickness at extremely low concentrations (0.05 wt%). Powder XRD experiments indicate that the aqueous gels 1 and 2 maintain an interdigitated bilayer structure with a 2.90 nm period with the alkyl chain tilted, while the organogels 1 and 2 take a loosely interdigitated bilayer structure with a 3.48 nm period. On the other hand, the aqueous- and the organogels 3 and 4 have 3.58 nm spacing, which corresponds to a monolayered structure. The XRD, 1H NMR and FT-IR results suggest that 1-4 are stabilized by a combination of the hydrogen-bonding, pi-pi interactions and hydrophobic forces.  相似文献   

16.
The structuring of water molecules in the vicinity of nonpolar solutes is responsible for hydrophobic hydration and association thermodynamics in aqueous solutions. Here, we studied the potential of mean force (PMF) for the formation of a dimer and trimers of methane molecules in three specific configurations in explicit water to explain multibody effects in hydrophobic association on a molecular level. We analyzed the packing and orientation of water molecules in the vicinity of the solute to explain the effect of ordering of the water around nonpolar solutes on many-body interactions. Consistent with previous theoretical studies, we observed cooperativity, manifested as a reduction of the height of the desolvation barrier for the trimer in an isosceles triangle geometry, but for linear trimers, we observed only anticooperativity. A simple mechanistic picture of hydrophobic association is drawn. The free energy of hydrophobic association depends primarily on the difference in the number of water molecules in the first solvation shell of a cluster and that in the monomers of a cluster; this can be approximated by the molecular surface area. However, there are unfavorable electrostatic interactions between the water molecules from different parts of the solvation shell of a trimer because of their increased orientation induced by the nonpolar solute. These electrostatic interactions make an anticooperative contribution to the PMF, which is clearly manifested for the linear trimer where the multibody contribution due to changes in the molecular surface area is equal to zero. The information theory model of hydrophobic interactions of Hummer et al. also explains the anticooperativity of hydrophobic association of the linear trimers; however, it predicts anticooperativity with a qualitatively identical distance dependence for nonlinear trimers, which disagrees with the results of simulations.  相似文献   

17.
We report a simple method to produce foams and emulsions of extraordinary stability by using hydrophobic cellulose microparticles, which are formed in situ by a liquid-liquid dispersion technique. The hydrophobic cellulose derivative, hypromellose phthalate (HP), was initially dissolved in water-miscible solvents such as acetone and ethanol/water mixtures. As these HP stock solutions were sheared in aqueous media, micron sized cellulose particles formed by the solvent attrition. We also designed and investigated an effective and simple process for making HP particles without any organic solvents, where both the solvent and antisolvent were aqueous buffer solutions at different pH. Consequently, the HP particles adsorbed onto the water/air or water/oil interfaces created during shear blending, resulting in highly stable foams or foam/emulsions. The formation of HP particles and their ability for short-term and long-term stabilization of interfaces strongly depended on the HP concentration in stock solutions, as well as the solvent chemistry of both stock solutions and continuous phase media. Some foams and emulsion samples formed in the presence of ca. 1 wt% HP were stable for months. This new class of nontoxic inexpensive cellulose-based particle stabilizers has the potential to substitute conventional synthetic surfactants, especially in edible, pharmaceutical and biodegradable products.  相似文献   

18.
Hydrophobic effects in aqueous urea were analyzed by molecular dynamics simulations. The contribution of solvents to the potential of mean force between two methane molecules was calculated by using molecular dynamics simulations and was compared with the solubility data of hydrocarbons in aqueous urea. Both the simulation results and the solubility data indicated that urea stabilizes methane-methane association. The stabilization was due to increasing the solvation free energies of small hydrocarbons such as methane by addition of urea. The solvation free energies of larger hydrocarbons, on the other hand, are decreased by addition of urea. This effect of the solute size on hydrophobic free energies in aqueous urea was also analyzed by using molecular dynamics simulations by means of division of the solvation process into two parts: the cavity formation and the introduction of the solute-solvent attractive interactions. In the cavity formation, urea increased hydrophobic free energies, and in the introduction of the solute-solvent attractive interactions, urea decreased hydrophobic free energies. The influence of urea on hydrophobic free energies was determined by the balance of effects of the two parts of the solvation process.  相似文献   

19.
We describe the quantitative synthesis of new pyrene labeled cyclodextrin-based polyrotaxane starting from pseudopolyrotaxane of alpha,omega-dimethacrylate poly(ethylene oxide) (PEO) and alpha-cyclodextrins (alpha-CDs). Using a solvent mixture (H2O/dimethyl sulfoxide (DMSO)), an almost quantitative conversion in polyrotaxane can be achieved using the coupling reaction between methacrylic functions and 1-pyrene butyric acid N-hydroxysuccinimide ester. This result is due to the fast blocking reaction of the pseudopolyrotaxane telechelic functions. The polyrotaxanes are characterized by NMR, size exclusion chromatography (SEC), and small-angle neutron scattering (SANS). A rodlike structure of the polyrotaxane is evidenced by SANS, and a persistence length of 70 A is determined. This result corresponds to an almost completely stretched PEO chain of 1000 g.mol(-1) molecular weight. We furthermore studied the opposite case of low packing density polyrotaxanes that were also silylated to suppress interactions between cyclodextrins. We observed a random coil structure only for silylated low packed polyrotaxane. This result demonstrates that both hydrogen bonding and packing density can explain the rodlike structure of cyclodextrin-based polyrotaxane.  相似文献   

20.
Integral enthalpies of solution at very low concentrations of sodium carboxylates and sodium dodecylsulfate in aqueous tert-butyl alcohol solutions at 25°C and 35°C were measured with an isoperibol submarine calorimeter. The enthalpies and heat capacities of transfer of these surfactants from water to aqueous tertbutyl alcohol solutions were derived from integral enthalpies of solution. The results are explained in terms of the structural alteration effect of the constituent hydrophobic and hydrophilic groups of the solute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号