首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The defect formation energies and electronic structures of Mn doped strontium titanate have been studied using CRYSTAL-09 code. The defect formation energies for MnSr and MnTi, under different chemical potential conditions, have been obtained to determine the way Mn prefers to occupy in the Mn doped SrTiO3 crystal. From the electronic structures of Mn doped SrTiO3, it is shown that MnSr cannot change the band gap of SrTiO3. However, MnTi can effectively reduce the band gap of SrTiO3 and improve the photocatalysis.  相似文献   

2.
王海燕  高雪云  任慧平  张红伟  谭会杰 《物理学报》2014,63(14):148101-148101
本文采用重合位置点阵理论构建了 α-Fe的Σ3[110](112)对称倾转晶界模型,通过基于密度泛函理论的平面波超软赝势方法研究了稀土La元素在 α-Fe中的占位倾向. 结果表明,La在 α-Fe晶界的杂质形成能最低,因而La原子倾向于占据晶界区;掺杂La前后的 α-Fe晶界电子结构计算结果显示,La占位于 α-Fe晶界会使体系中的电荷发生重新分配,将提供更多电子用于晶界区成键,使得Fe原子得到更多的电子,这将导致掺杂区原子间结合有离子化趋势,从而使La与晶界区相邻Fe原子之间的相互作用加强,也使晶界原子与晶界两侧Fe原子的键合加强,从能量角度解释了材料宏观力学性能变化的原因;计算同时发现,La加入后,也使晶界上的原子成键区态密度左移,降低了体系的总能量,使晶界结构更为稳定. 关键词: La α-Fe')" href="#">α-Fe 晶界 第一性原理  相似文献   

3.
A symmetrical tilt =5[001]/(310) grain-boundary and its surrounding matrix in an Al-5% Mg alloy, as prepared by cold rolling and annealing, have been studied by conventional transmission electron microscopy, high-resolution electron microscopy, and analytical electron microscopy. EDS measurements of the Mg concentration in the bulk and at grain boundaries indicate variations of Mg content ranging between 4 to 11 atomic percent. This variation is attributed to local ordering of Mg atoms in the alloy. HREM images show that the boundary runs parallel to the median of (310) and contains segments primarily composed of two types of structural unit. One unit contains seven atomic sites, while the other contains eight. In both types of unit, the grain-boundary coincident site lattice is continuous across the interface and exhibits periodicity in its core structure. The core structure, which is characterized by kite-like structural units containing seven atoms, conforms well with the structure of =5 grain boundaries in pure FCC materials. The presence of atomic-scale ordering of Mg atoms along [001] of the boundary core is associated with the existence of the structural unit possessing eight atomic sites.  相似文献   

4.
Metal-oxide interfaces play an important role in spintronics—a new area of microelectronics that exploits spin of electrons in addition to the traditional charge degree of freedom to enhance the performance of existing semiconductor devices. Magnetic tunnel junctions (MTJs) consisting of spin-polarized ferromagnetic electrodes sandwiching an insulating barrier are such promising candidates of spintronic devices. The paper reviews recent results of first-principle density-functional studies of the atomic and electronic structure of metal-oxide interfaces in Co/Al2O3/Co and Co/SrTiO3/Co MTJs. The most stable interface structures, O-terminated for fcc Co (111)/-alumina(0001) and TiO2-terminated with oxygens on top of Co atoms for fcc Co (001)/SrTiO3(001) were identified based on energetics of metal-oxide cohesion at the interface. The covalent character of bonding for both the Co/alumina and Co/SrTiO3 interface structures has been determined based on the pattern of electron distribution across the interface. The Al-terminated Co/alumina interface that corresponds to an under-oxidized MTJ exhibits a metallic character of bonding. The unusual charge transfer process coupled with exchange interactions of electrons in Co results in quenching of surface magnetism at the interface and substantial reduction of work of separation. The electronic structure of the O-terminated Co/Al2O3/Co MTJ exhibits negative spin polarization at the Fermi energy within the first few monolayers of alumina but it eventually becomes positive for distances beyond 10 Å. The Co/SrTiO3/Co MTJ shows an exchange coupling between the interface Co and Ti atoms mediated by oxygen, which results in an antiparallely aligned induced magnetic moment on Ti atoms. This may lead to a negative spin polarization of tunneling across the SrTiO3 barrier from the Co electrode. The results illustrate the important fact that spin-polarized tunneling in magnetic tunnel junctions is not determined entirely by bulk density of states of ferromagnet electrodes, but is also very sensitive to the nature of the insulating tunneling barrier, as well as the atomic structure and bonding at the ferromagnet/insulator interface.  相似文献   

5.
The grain boundary ensembles in Ni3Mn alloy with L12 superstructure and different manganese content were investigated. It was found that the process of atomic ordering is accompanied by the migration of grain boundaries. The presence of oxygen atoms in solid solution and oxide particles at the grain bound- aries hinders the formation of the long-range atomic order in the crystalline lattice and migration of grain boundaries.  相似文献   

6.
In order to find new functions of monolayer MoS2 in nanoelectronics or spin electronic devices, using spin-polarized density functional theory (DFT) calculations with on-site coulomb interaction (U), we investigated substitutional doping of Mo atoms of monolayer zigzag MoS2 nanoribbon (ZZ-MoS2 NR) by transition metals (TM) (where TM = Ti, V, Cr, Mn) at the Mo-edge, S-edge, and the middle of the NRs. The results of this study indicate the NR widened irrespective of the doped TM position and type, and the Mo-edge was found as the easiest substitutional position. For ZZ-MoS2 NR doped by Mn, Cr or V atoms, the preferred magnetic coupling state is the edge atoms of S at the S-edge, exhibiting the same spin polarization with TM (named the FM1 state), attributing the NR with metallic magnetism. For Ti-doped monolayer ZZ-MoS2 NR, in addition to the FM1 state, other preferred magnetic coupling state was observed in which the edge atoms of S at the S-edge exhibit the opposite spin polarization with that of Ti (named the FM2 state). Thus, the NR doped by Ti atom possesses metallic (FM1 state) or half-metallic (FM2 state) magnetism. The total magnetic moments of the ZZ-MoS2 NR doped by TM follows a linear relationship as a function of the TM dopants (Mn, Cr, V, and Ti). Under >4% applied strain, the NR doped by Ti atom only presents the characteristics of half-metallic magnetism as the initial one in the FM2 state, and its total magnetic moment always remained 0 μB, i.e., it was not affected by the width of the NR. This study provides a rational route of tuning the magnetic properties of ZZ-MoS2 NRs for their promising applications in nanoelectronics and spin electronic devices.  相似文献   

7.
The atomic structure of 90° [100] (or [010]) tilt grain boundaries in YBa2Cu3O7 thin-film step-edge junctions and, for comparison, in the interface between a-axis and c-axis oriented YBa2Cu3O7 grains is investigated by means of high-resolution transmission electron microscopy. For (100)(001)-type boundaries two different structures are found. In the first a (001) CuO2 plane of one grain faces a (100) Y–Ba–O plane of the other grain, in the second a (001) BaO plane faces a (100) Cu–O plane. In the former structure an incomplete unit cell of YBa2Cu3O7 terminates at the boundary and a smaller strain in the adjacent CuO2 planes is detected in comparison with the latter. It is found that a combination of a partial dislocation with a 124 stacking fault is a way to accommodate the lattice mismatch between c and 3a of YBa2Cu3O7 in the boundary. For a symmetric (103)(103)-type boundary a displacement of the Cu-atoms of the CuO2 planes is found near the boundary plane. From this a redistribution of the oxygen atoms around the Y-atoms located right in the boundary plane is inferred. The possible effect of the boundary structure on the superconducting properties of YBa2Cu3O7 films is discussed.  相似文献   

8.
We present a short review on our current investigations of the atomic and electronic structures of a grain boundary in iron. Atomic structures of grain boundaries were simulated and the local electronic densities of states were calculated in the simulated structure. When phosphorus impurity atoms segregated at the grain boundaries in iron, trigonal prismatic FeP clusters were formed. Segregated boron atoms tended to stay at the central site of polyhedra constructed by host atoms in the grain boundaries. The non-bonding states of the iron atom at the grain boundary disappear by forming a strong bonding orbital with the orbital of the segregated impurity atom. This bonding orbital is formed in a Fe3d host band in the case of a boron impurity. On the other hand, the bonding orbital is formed at lower energies for the phosphorus impurity and is less-mixed with the Fe3d host band. Non-bonding states are formed around the Fe9P clusters. These can give a qualitative explanation for the embrittlement of the impurity segregated grain boundary. Finally, we can explain from the viewpoint of the electronic structure why the interstitial impurity is the only cohesive enhancer.  相似文献   

9.
The dynamics of electrostatic potential barriers at grain boundaries (GBs) in Nb-doped SrTiO3 bicrystals is investigated using a unique combination of bulk and in-situ TEM electrical measurements across isolated GBs, coupled with electron holography under in-situ applied bias. The Nb bulk-doped bicrystals exhibit a positive GB potential that suppresses reversibly under applied bias greater than the nonlinearity threshold in the current-voltage curve. This suppression is interpreted as break-down of the potential barrier to current transport.The results on Nb bulk-doped bicrystals have been compared to those in which Mn has been added as a grain boundary specific dopant. This acceptor doping of the grain boundary causes an appreciable increase in the grain boundary resistance and extension of the nonlinear regime. A preliminary account of static electron holography shows a relatively flat potential profile across the GB, indicating probable compensation of donor states at the GB core with Mn-acceptors. Interestingly, the phase profile under applied bias in this case exhibits a reversible dip at the GB which is interpreted as an activation of GB trap states due to Mn-acceptor dopants trapping extra electrons (the majority charge carriers) at the GB core, inducing a negative GB potential, and diminishing current transport until the threshold bias is exceeded.The synergistic combination of nanoscale TEM measurements coupled with traditional macroscopic electrical measurements is emphasized.  相似文献   

10.
The existence of a possible grain boundary disordering transition of the melting type in a =5 (001) twist boundary of aluminium bicrystal below the melting temperature was investigated using a constant pressure molecular dynamics simulation. The calculated melting temperature T cm of the bulk Al is about 960 K. The total internal energy, the structure factor, and the pair distribution function were calculated at different layers across the grain boundary. The mean atomic volume, the grain boundary energy, and the thermal expansion coefficients were also calculated using the same simulation method. This simulation also allows us to image the grain boundary structure at different temperatures. The equilibrium grain boundary structure at 300 K retains the periodicity of the coincident site lattice, so that the lowest energy structure corresponds to the coincident site arrangement of the two ideal crystals. With increasing temperature, the total internal energy of the atoms for both the perfect crystal and the grain boundary increases, as do the number of layers in the grain boundary. The grain boundary core exists and the perfect crystal structure still exists outside the grain boundary at 0.9375 T cm. However, two atomic layers of the equilibrium grain boundary structure at 0.9375 T cm lose the coincident site lattice periodicity and attain a structure with liquid-like disorder. Therefore, partial melting of the grain boundary has occurred at the temperature above 0.9375 T cm which is in agreement with the experimental results.  相似文献   

11.
We report structural, magnetic and electronic structure study of Mn doped TiO2 thin films grown using pulsed laser deposition method. The films were characterized using X-ray diffraction (XRD), dc magnetization, X-ray magnetic circular dichroism (XMCD) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. XRD results indicate that films exhibit single phase nature with rutile structure and exclude the secondary phase related to Mn metal cluster or any oxide phase of Mn. Magnetization studies reveal that both the films (3% and 5% Mn doped TiO2) exhibit room temperature ferromagnetism and saturation magnetization increases with increase in concentration of Mn doping. The spectral features of XMCD at Mn L3,2 edge show that Mn2+ ions contribute to the ferromagnetism. NEXAFS spectra measured at O K edge show a strong hybridization between Mn, Ti 3d and O 2p orbitals. NEXAFS spectra measured at Mn and Ti L3,2 edge show that Mn exist in +2 valence state, whereas, Ti is in +4 state in Mn doped TiO2 films.  相似文献   

12.
唐春梅  郭微  朱卫华  刘明熠  张爱梅  巩江峰  王辉 《物理学报》2012,61(2):26101-026101
采用密度泛函理论中广义梯度近似对非典型富勒烯C22和过渡金属内掺衍生物M@C22(M=Sc,Ti,V,Cr,Mn,Fe,Co和Ni)的几何结构和电子结构进行计算研究.发现非典型富勒烯C22的基态结构是含有一个四碳环的单重态笼状结构.过渡金属原子的掺入明显提高了体系的稳定性. C-M键既有一定共价性又有一定离子性.磁性、能级图、轨道分布和态密度图分析表明: M原子的3d轨道和碳笼的C原子的原子轨道之间存在较强的轨道杂化. Ti, Cr, Fe和Ni内掺的结构出现磁性完全猝灭现象. Sc和碳笼间是弱反铁磁作用, V,Mn和Co与碳笼间是弱铁磁作用.  相似文献   

13.
The relaxed structure and energy of the (310) symmetrical tilt grain boundary (STGB) in SrTiO3 have been calculated using static lattice energy minimization methods. In principle, the (310) GB plane can either be a cation-rich, positively charged SrTiO plane or a negatively charged oxygen plane, and both scenarios have been considered in this report. The effect of point-defect reconstruction at the GB core region, manifested either as completely missing columns or as half-filled columns of ions as suggested by experiments, has been analyzed. The results indicate that while Schottky defects are very strongly preferred energetically at the GB core, there is not significant gain in energy by having half-filled columns, as opposed to fully-dense and fully-empty columns, at the GB core. The simulation results have been analyzed in the context of Pauling's rules of crystal chemistry and bicrystallography. The results form the basis for an objective comparison with experimental studies in Part II of the paper.  相似文献   

14.
Determination of the atomic structure of grain boundaries is the key to fundamental understanding of the critical current density in polycrystalline superconductors. High-resolution images with incoherent characteristics, obtained using a high-angle annular detector on an atomic resolution scanning transmission electron microscope, are used to study the atomic arrangements of these technologically important boundaries. The incoherent Z-contrast images do not experience contrast reversals with defocus or sample thickness and display no Fresnel Fringe effects at boundaries. Observed rigid shifts of atomic columns at grain boundaries are independent of sample thickness and objective lens defocus. These characteristics allow unambiguous and intuitive interpretations of the generated images. We find the atomic structures at grain boundaries in YBa2Cu3O7-δ are strongly influenced by the strong tendency of this compound to exist only as complete unit cells terminated at {001} and {100} planes. The weak-link behavior associated with high-angle grain boundaries may follow from this structure in which there is no clear connection between the {100} facets of adjacent grains. Symmetric grain boundaries where adjacent grains share a common boundary plane have also been observed in YBa2Cu3O7-δ. In these boundaries partial structural coupling of the grains is maintained. There is evidence that these two boundary forms produce junctions with very different superconducting properties.  相似文献   

15.
The atomistic simulation results presented in Part I for SrTiO3 (310) symmetrical tilt grain boundary (STGB, the so-called = 5 GB with 36.8° symmetrical misorientation about [001]) are analyzed in the context of available experimental studies. In particular, atomic imaging studies of SrTiO3 GBs via high resolution TEM and incoherent Z-contrast STEM imaging; and determination of oxygen positions by combining electron energy loss spectroscopy (EELS) and bond-valence-sum rules, are compared with simulation results. The atomistic simulation data on the GB energies are compared with relative experimental estimates obtained via a novel approach of faceting of focused ion beam (FIB) induced microvoids.While there are considerable differences in details of simulation and experimental results, some basic trends seem to emerge about the core structural framework of GBs in SrTiO3. The paper highlights the limitations of both, experimental and simulation techniques, and argues in favor of synergistic use of diverse experimental and simulation approach to determine the atomic structure and properties of GBs.  相似文献   

16.
The electronic properties of Mg-doped perfect SrTiO3 and crystals containing oxygen vacancies systems are investigated by first principles calculation. Dopant formation energy results show that the Mg atoms preferentially enter the Sr site in SrTiO3. Substitution of Ti by Mg brings some acceptor levels, which introduces the p-type conductivity of SrTiO3. Creation of oxygen vacancies in SrTiO3 introduces donor levels, which can contribute to the n-type conductivity. In SrTiO3 containing oxygen vacancies system, a self-compensation effect will occur when Ti is substituted by Mg, and the system undergoes n-type to p-type transition.  相似文献   

17.
The electronic structures and optical properties of N-doped, S-doped and N/S co-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, the top of the valence band is made up of the O 2p states for the pure SrTiO3. When N and S atoms were introduced into SrTiO3 lattice at O site, the electronic structure analysis shows that the doping of N and S atoms could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band and S 2p states hybrid with O 2p states, respectively. When the N/S co-doped, the energy gap has further narrowing compared with only N or S doped SrTiO3. The calculations of optical properties also indicate a high photo response for visible light for N/S co-doped SrTiO3. Besides, we find a new impurity state which separates from the O 2p states could improve the photocatalytic efficiency and we also propose a model for light electron-hole transportation which can explain the experiment results well. All these conclusions are in agreement with the recent experimental results.  相似文献   

18.
Using the first-principles calculations based on density functional theory, we investigate the more d-electrons doping effects on the electronic structure and magnetism of the parent inverse Heusler alloy Ti2CoAl by the substitution of Nb and V atoms for Ti(A) and Ti(B) atoms locating at the two inequivalent sublattices. The Ti2CoAl is half-metallic with Fermi level near the top of the minority-spin valence band and hence its spin-polarization is easily reduced by the spin-flip excitation. Our total energy calculations show that the V/Nb doping at the Ti(A)/Ti(B) site is energetically favorable compared with the Ti(B)/T(A) site due to the lower total energy. Our band structure calculations indicate that for the V doped compounds, half-metallicity can be well retained regardless of doping sites and percentages except for the case of Ti(A)-site doping with x = 1, while for Nb doped compounds, the half-metallicity persists only in Ti(B)-site doping with different percentages. For the doped compounds with half-metallicity, the Fermi level shifts from the top of minority-spin valence band to the bottom of minority-spin conduction band with increasing content of x, and typically, the doped compounds (V in Ti(A) and Ti(B) sites at x = 0.75 and 0.5, respectively; Nb in Ti(B) site at x = 0.5), whose Fermi levels are adjusted to the expected positions to effectively inhibit the spin-flip excitation are promising candidates for spintronics applications.  相似文献   

19.
Imaging the doping elements is critical for understanding the photocatalytic activity of doped TiO2 thin film. But it is still a challenge to characterize the interactions between the dopants and the TiO2 lattice at the atomic level. Here, we use high angle annular dark-field/annular bright-field scanning transmission electron microscope (HAADF/ABF-STEM) combined with electron energy loss spectroscopy (EELS) to directly image the individual Cr atoms doped in anatase TiO2(001) thin film from [100] direction. The Cr dopants, which are clearly imaged through the atomic-resolution EELS mappings while can not be seen by HADDF/ABF-STEM, occupy both the substitutional sites of Ti atoms and the interstitial sites of TiO2 matrix. Most of them preferentially locate at the substitutional sites of Ti atoms. These results provide the direct evidence for the doping structure of Cr-doped A-TiO2 thin film at the atomic level and also prove the EELS mapping is an excellent technique for characterizing the doped materials.  相似文献   

20.
By performing the first-principles calculations, we investigated the sensitivity and selectivity of transitional metal (TM, TMSc, Ti, V, Cr and Mn) atoms doped graphene toward NO molecule. We firstly calculated the atomic structures, electronic structures and magnetic properties of TM-doped graphene, then studied the adsorptions of NO, N2 and O2 molecules on the TM-doped graphene. By comparing the change of electrical conductivity and magnetic moments after the adsorption of these molecules, we found that the Sc-, Ti- and Mn-doped graphene are the potential candidates in the applications of gas sensor for detection NO molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号