首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The question whether molecular dynamics (MD) simulations can yield reliable structural and dynamical properties of metalloproteins depend on the accuracy of the force field, i.e., the potential energy function (PEF) and associated parameters modeling the interactions of the metal ion of interest with water and protein ligands. Previously, we had developed a CTPOL PEF for protein simulations of Zn(2+) bound to Cys(-) and/or His(0) that includes charge transfer and local polarization effects as well as metal van der Waals parameters that reproduce the structural and thermodynamical properties of 22 dications. Here, we evaluate if the CTPOL PEF and the new metal parameters (referred to as the CTPOLa force field) can be applied to proteins containing polynuclear metal-binding sites and heavy toxic metal ions, using the CdZn(2)-Cys(9) beta-domain of rat liver metallothionein-2 and the Hg(2+)-bound 18-residue peptide from MerP as test systems. Using the CTPOLa force field, simulations of the beta-domain of rat liver metallothionein-2 totaling 19 ns could preserve the experimentally observed CdZn(2)-Cys(9) complex geometry and overall protein structure, whereas simulations neglecting charge transfer and local polarization effects could not. However, the CTPOLa force field cannot reproduce the experimentally observed linear bicoordination of Hg(2+) in the MerP peptide without adding an angular restraint to the CTPOL PEF to correct the angle distribution about Hg(2+). Thus, the force fields presented herein for the group IIB metal ions can be applied to simulation studies of proteins containing polynuclear metal-binding sites and heavy metal ions in aqueous solution. PEF neglecting charge transfer and local polarization effects in conjunction with vdW parameters adjusted to reproduce the structural and thermodynamical properties of only the metal ion in question could not yield an accurate representation of the metal-binding site and overall protein structure.  相似文献   

2.
The hydration free energy, structure, and dynamics of the zinc divalent cation are studied using a polarizable force field in molecular dynamics simulations. Parameters for the Zn(2+) are derived from gas-phase ab initio calculation of Zn(2+)-water dimer. The Thole-based dipole polarization is adjusted based on the Constrained Space Orbital Variations (CSOV) calculation while the Symmetry Adapted Perturbation Theory (SAPT) approach is also discussed. The vdW parameters of Zn(2+) have been obtained by comparing the AMOEBA Zn(2+)-water dimerization energy with results from several theory levels and basis sets over a range of distances. Molecular dynamics simulations of Zn(2+) solvation in bulk water are subsequently performed with the polarizable force field. The calculated first-shell water coordination number, water residence time and free energy of hydration are consistent with experimental and previous theoretical values. The study is supplemented with extensive Reduced Variational Space (RVS) and Electron Localization Function (ELF) computations in order to unravel the nature of the bonding in Zn(2+)(H(2)O)(n) (n=1,6) complexes and to analyze the charge transfer contribution to the complexes. Results show that the importance of charge transfer decreases as the size of Zn-water cluster grows due to anticooperativity and to changes in the nature of the metal-ligand bonds. Induction could be dominated by polarization when the system approaches condensed-phase and the covelant effects are eliminated from the Zn(II)-water interaction. To construct an "effective" classical polarizable potential for Zn(2+) in bulk water, one should therefore avoid over-fitting to the ab initio charge transfer energy of Zn(2+)-water dimer. Indeed, in order to avoid overestimation of condensed-phase many-body effects, which is crucial to the transferability of polarizable molecular dynamics, charge transfer should not be included within the classical polarization contribution and should preferably be either incorporated in to the pairwise van der Waals contribution or treated explicitly.  相似文献   

3.
Zn(2+) in the tumor-suppressor protein p53 DNA-binding domain (DBD) is essential for its structural stability and DNA-binding specificity. Mg(2+) has also been recently reported to bind to the p53DBD and influence its DNA-binding activity. In this contribution, the binding geometry of Mg(2+) in the p53DBD and the mechanism of how Mg(2+) affects its DNA-binding activity were investigated using density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Various possible coordination geometries of Mg(2+) binding to histidines (His), cysteines (Cys), and water molecules were studied at the B3LYP/6-311+g** level of theory. The protonation state of Cys and the environment were taken into account to explore the factors governing the coordination geometry. The free energy of the reaction to form the Mg(2+) complexes was estimated, suggesting that the favorable binding mode changes from a four- to six-coordinated geometry as the number of the protonated Cys increases. Furthermore, MD simulations were employed to explore the binding modes of Mg(2+) in the active site of the p53DBD. The simulation results of the Mg(2+) system and the native Zn(2+) system show that the binding affinity of Mg(2+)to the p53DBD is weaker than that of Zn(2+), in agreement with the DFT calculation results and experiments. In addition, the two metal ions are found to make a significant contribution to maintain a favorable orientation for Arg248 to interact with putative DNA, which is critically important to the sequence-specific DNA-binding activity of the p53DBD. However, the effect of Mg(2+) is less marked. Additionally, analysis of the natural bond orbital (NBO) charge transfer reveals that Mg(2+) has a higher net positive charge than Zn(2+), leading to a stronger electrostatic attractive interaction between Mg(2+) and putative DNA. This may partly explain the higher sequence-independent DNA-binding affinity of p53DBD-Mg(2+) compared to p53DBD-Zn(2+) observed in experiment.  相似文献   

4.
5.
Type 1 blue copper proteins uniquely coordinate Cu(2+) in a trigonal planar geometry, formed by three strong equatorial ligands, His, His, and Cys, in the protein. We designed a stable Cu(2+) coordination scaffold composed of a four-stranded α-helical coiled-coil structure. Two His residues and one Cys residue were situated to form the trigonal planar geometry and to coordinate the Cu(2+) in the hydrophobic core of the scaffold. The protein bound Cu(2+), displayed a blue color, and exhibited UV-vis spectra with a maximum of 602-616 nm, arising from the thiolate-Cu(2+) ligand to metal charge transfer, depending on the exogenous axial ligand, Cl(-) or HPO(4)(2-). The protein-Cu(2+) complex also showed unresolved small A(∥) values in the electron paramagnetic resonance (EPR) spectral analysis and a 328 mV (vs normal hydrogen electrode, NHE) redox potential with a fast electron reaction rate. The X-ray absorption spectrum revealed that the Cu(2+) coordination environment was identical to that found in natural type 1 blue copper proteins. The extended X-ray absorption fine structure (EXAFS) analysis of the protein showed two typical Cu-N(His) at around 1.9-2.0 ?, Cu-S(Cys) at 2.3 ?, and a long Cu-Cl at a 2.66 ?, which are also characteristic of the natural type 1 blue copper proteins.  相似文献   

6.
From the standpoint of protein dynamics and metalloprotein design, it is interesting to create an artificial protein which induces structural change and regulates its function by metal-ion binding. We engineered a novel protein, "Antennafinger (Ant-F)", whose structure and function can be controlled with Zn(II), by introducing the consensus sequence of a Cys(2)His(2)-type zinc finger protein into a non-metalloprotein scaffold, an Antennapedia homeodomain mutant (Ant-wt), selected using a motif-searching system. The circular dichroism studies demonstrate that Ant-F has secondary structures similar to Ant-wt and also changes its conformation due to Zn(II)-binding. The optical absorption spectra of the Co(II) complexes of Ant-F and its derivative proteins suggest that the geometry of the metal center of holo-Ant-F is tetrahedral and that the mutated Cys(2)His(2) residues are involved in the complex formation. In addition, the gel mobility shift assay reveals that the DNA binding activity of Ant-F can be regulated through Zn(II)-induced structural alteration. These results provide valuable information about the dynamic properties of proteins and a novel concept for metalloprotein design.  相似文献   

7.
Structural, dynamical, and vibrational properties of complexes made of metal cobalt(III) coordinated to different amounts of cysteine molecules were investigated with DFT-based Car-Parrinello molecular dynamics (CPMD) simulations in liquid water solution. The systems are composed of Co(III):3Cys and Co(III):2Cys immersed in liquid water which are modeled by about 110 explicit water molecules, thus one of the biggest molecular systems studied with ab initio molecular simulations so far. In such a way, we were able to investigate structural and dynamical properties of a model of a typical metal binding site used by several proteins. Cobalt, mainly a toxicological agent, can replace the natural binding metal and thus modify the biochemical activity. The structure of the surrounding solvent around the metal-ligands complexes is reported in detail, as well as the metal-ligands coordination bonds, using radial distribution functions and electronic analyses with Mayer bond orders. Structures of the Cocysteine complexes are found in very good agreement with EXAFS experimental data, stressing the importance of considering the surrounding solvent in the modeling. A vibrational analysis is also conducted and compared to experiment, which strengthens the reliability of the solvent interactions with the Cocysteine complexes from our molecular dynamics simulations, as well as the dynamics of the systems. From this preliminary analysis, we could suggest a vibrational fingerprint able to distinguish Co(III):2Cys from Co(III):3Cys. Our simulations also show the importance of considering a quantum explicit solvent, as solute-to-solvent proton transfer events have been observed.  相似文献   

8.
The detailed mechanism of metal-cysteine binding is still poorly understood. It is not clear if every metal cation can induce cysteine deprotonation, how the dielectric medium affects this process, and the extent to which other ligands from the metal's first and second coordination shell influence cysteine ionization. It is also not clear if the zinc cation, with its positive charge reduced by charge transfer from the first two bound cysteinates, could still assist deprotonation of the next one or two cysteines in Cys3His and Cys4 zinc-finger cores. Here, we elucidate the factors governing the cysteine protonation state in metal-binding sites, in particular in Zn.Cys4 complexes, using a combined ab initio and continuum dielectric approach. Transition metal dications such as Zn2+ and Cu2+ and trivalent cations such as Al3+ with pronounced ability to accept charge from negatively charged Cys- are predicted to induce cysteine deprotonation, but not "hard" divalent cations such as Mg2+. A high dielectric medium was found to favor cysteine deprotonation, while a low one favored the protonated state. Polarizable ligands in the metal's first shell that can competitively donate charge to the metal cation were found to lower the efficiency of the metal-assisted cysteine deprotonation. The calculations predict that the zinc cation could assist deprotonation of all the cysteines during the folding of Cys4 zinc-finger cores and the [Zn.(Cys-)4]2- state is likely to be preserved in the final folded conformation of the protein provided the binding site is tightly encapsulated by backbone peptide groups or lysine/arginine side chains, which stabilize the ionized cysteine core.  相似文献   

9.
Density Functional Theory and post‐Hartree Fock calculations reveal an unusual energy profile for Zn? S and Zn? N bond dissociation reactions in several [Zn(SR)4]2? and [Zn(Im)(SR)3]? complexes. The Zn? S bond dissociation in tetrathiolate dianions, which is highly exothermic in the gas phase, proceeds through a late transition state which can be rationalized on the basis of an avoided crossing resulting from Coulomb repulsion between the anionic fragments and ligand‐to‐metal charge‐transfer in the [Zn(SR)4]2? complexes. When solvation models for water, DMSO, or acetonitrile are included, some complexes become stable while others are metastable, so this constitutes the first theoretical model which is in full agreement with the experimental data for various [Zn(SR)4]2?, [Zn(SR)3]?, and [Zn(Im)(SR)3]? complexes. The analysis given here indicates that the Zn(Cys)4 and Zn(His)(Cys)3 cores of numerous proteins are metastable with respect to Zn? S and Zn? N bond dissociation, respectively. This is consistent with the kinetic lability at the zinc‐centers and illustrates that in nature, thermodynamic stability is imparted upon the zinc cores by the protein environment.  相似文献   

10.
Cation interactions with π-systems are a problem of outstanding contemporary interest and the nature of these interactions seems to be quite different for transition and main group metal ions. In this paper, we have systematically analyzed the contrast in the bonding of Cu(+) and main group metal ions. The molecular structures and energetics of the complexes formed by various alkenes (A = C(n)H(2n), n = 2-6; C(n)H(2n- 2), n = 3-8 and C(n)H(2n + 2), n = 5-10) and metal ions (M = Li(+), Na(+), K(+), Ca(2+), Mg(2+), Cu(+) and Zn(2+)) are investigated by employing ab initio post Hartree-Fock (MP2/6-311++G**) calculations and are reported in the current study. The study, which also aims to evaluate the effect of the size of the alkyl portion attached to the π-system on the complexation energy, indicates a linear relationship between the two. The decreasing order of complexation energy with various metal ion-alkene complexes follows the order Zn(2+)-A > Mg(2+)-A > Ca(2+)-A > Cu(+)-A > Li(+)-A > Na(+)-A > K(+)-A. The increased charge transfer and the electron density at (3,-1) intermolecular bond critical point corroborates well with the size of the π-system and the complexation energy. The observed deviation from the linear dependency of the Cu(+)-A complexes is attributed to the dπ→π* back bonding interaction. An energy decomposition analysis via the reduced variational space (RVS) procedure was also carried out to analyze which component among polarization, charge transfer, coulomb and exchange repulsion contributes to the increase in the complexation energy. The RVS results suggest that the polarization component significantly contributes to the increase in the complexation energy when the alkene size increases.  相似文献   

11.
朱苗力  卢丽萍  杨频 《化学学报》2004,62(8):783-788
二甲双胍盐酸盐、硝酸盐及与Zn2+, Cu2+, Ni2+三种金属离子配合物的结构特点、电荷分布和二甲双胍配合物对四氧嘧啶糖尿病小鼠血糖影响的研究表明:Zn2+配合物表现为较为少见的单齿配位,而Cu2+, Ni2+配合物表现为双齿配位.进一步电荷分布计算发现,与端基N原子相比,二甲双胍的桥基N原子具有较高的负电荷.三种金属离子配合物对四氧嘧啶糖尿病小鼠血糖的影响研究显示,桥基N配位掩蔽后,二甲双胍的降血糖功能丧失.说明桥基N对二甲双胍的降血糖作用具有重要意义.  相似文献   

12.
The complexes formed by the simplest amino acid, glycine, with different bare and hydrated metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) were studied in the gas phase and in solvent in order to give better insight into the field of the metal ion-biological ligand interactions. The effects of the size and charge of each cation on the organization of the surrounding water molecules were analyzed. Results in the gas phase showed that the zwitterion of glycine is the form present in the most stable complexes of all ions and that it usually gives rise to an eta(2)O,O coordination type. After the addition of solvation sphere, a resulting octahedral arrangement was found around Ni(2+), Co(2+), and Fe(2+), ions in their high-spin states, whereas the bipyramidal-trigonal (Mn(2+) and Zn(2+)) or square-pyramidal (Cu(2+)) geometries were observed for the other metal species, according to glycine behaves as bi- or monodentate ligand. Despite the fact that the zwitterionic structure is in the ground conformation in solution, its complexes in water are less stable than those obtained from the canonical form. Binding energy values decrease in the order Cu(2+) > Ni(2+) > Zn(2+) approximately Co(2+) > Fe(2+) > Mn(2+) and Cu(2+) > Ni(2+) > Mn(2+) approximately Zn(2+) > Fe(2+) > Co(2+) for M(2+)-Gly and Gly-M(2+) (H(2)O)(n) complexes, respectively. The nature of the metal ion-ligand bonds was examined by using natural bond order and charge decomposition analyses.  相似文献   

13.
A comparative study of the Zn(2+) and Cu(2+) complexation with thiacalix[4]arene is presented using density functional theory methods. The structures and energetics of the possible binding modes of both metal complexes are investigated in detail. Two types of patterns were found in the second deprotonated species, adjacent or opposite phenolate groups, which determine the stability of the different binding modes. The most stable structure for both metal ions was predicted to be a distorted square planar coordination at lower rim with opposite phenolate groups, which has never been referred to in the literature. The results show a higher complexation ability of Cu(2+) than Zn(2+) for all of the binding modes, which is in good agreement with the previous study on liquid-liquid extraction experiments. The analysis of the electrostatic potential surfaces of the metal complexes allows us to conclude that the different complexation features can also be explained by a bigger charge transfer from the metal to the coordinated atoms in the case of the Cu(2+) complex.  相似文献   

14.
Sadler PJ  Viles JH 《Inorganic chemistry》1996,35(15):4490-4496
1H and (113)Cd NMR studies are used to investigate the Cd(2+) binding sites on serum albumin (67 kDa) in competition with other metal ions. A wide range of mammalian serum albumins possess two similar strong Cd(2+) binding sites (site A 113-124 ppm; site B 24-28 ppm). The two strong sites are shown not to involve the free thiol at Cys34. Ca(2+) influences the binding of Cd(2+) to isolated human albumin, and similar effects due to endogenous Ca(2+) are observed for intact human blood serum. (1)H NMR studies show that the same two His residues of human serum albumin are perturbed by Zn(2+) and Cd(2+) binding alike. Zn(2+) displaces Cd(2+) from site A which leads to Cd(2+) occupation of a third site (C, 45 ppm). The N-terminus of HSA is not the locus of the two strong Cd(2+) binding sites, in contrast to Cu(2+) and Ni(2+). After saturation of the N-terminal binding site, Cu(2+) or Ni(2+) also displaces Cd(2+) from site A to site C. The effect of pH on Cd(2+) binding is described. A common Cd(2+)/Zn(2+) binding site (site A) involving interdomain His residues is discussed.  相似文献   

15.
Although the Zn(2+) cation in Zn·Cys(4), Zn·Cys(3)His, Zn·Cys(2)His(2), and Zn(2)Cys(6) cores of zinc finger (Zf) proteins typically plays a structural role, the Zn-bound thiolates in some Zf cores are reactive. Such labile Zf cores can serve as drug targets for retroviral or cancer therapies. Previous studies showed that the reactivity of a Zn-bound thiolate toward electrophiles is significantly reduced if it forms S---NH hydrogen bonds with the backbone amide. However, we found several well-known inactive Zf cores containing Cys ligands with no H-bonding interactions. Here, we show that H bonds from the peptide backbone or bonds from a second Zn cation to Zn-bound S atoms suppress the reactivity not only of these S atoms, but also of Zn-bound S* atoms with no interactions. Indeed, two or more indirect NH---S hydrogen bonds raise the free energy barrier for methylation of a Zn-bound S* in a Cys(4) core more than a direct NH---S* hydrogen bond. These findings help to elucidate why several well-known Zf cores have Cys ligands with no H bonds, but are unreactive. They also help to provide guidelines for distinguishing labile Cys-rich Zn sites from structural ones, which in turn help to identify novel potential Zf drug targets.  相似文献   

16.
17.
Preparation and characterization of two new site-directed mutant copper-zinc superoxide dismutase proteins from Saccharomyces cerevisiae, i.e., His46Cys (H46C) and His120Cys (H120C), in which individual histidyl ligands in the copper-binding site were replaced by cysteine, are reported here. These two mutant CuZnSOD proteins may be described as type 2 (or normal) rather than type 1 (or blue) copper-cysteinate proteins and are characterized by their yellow rather than blue color, resulting from intense copper-to-sulfur charge transfer bands around 400 nm, their type 2 EPR spectra, with large rather than small nuclear hyperfine interactions, and their characteristic type 2 d-d electronic absorption spectra. An interesting difference between these two copper site His-to-Cys mutations is that the imidazolate bridge between the two metal sites that is characteristic of the wild-type protein remains intact in the case of the H46C mutant but is not present in the case of the H120C mutant.  相似文献   

18.
HIV‐1 nucleocapsid (NCp7) is a two Cys2HisCys zinc knuckle (N‐Zn and C‐Zn) protein that plays a key role in viral replication. NCp7 conformational dynamics is characterized by NMR relaxation dispersion and chemical exchange saturation transfer measurements. While the N‐Zn knuckle is conformationally stable, the C‐Zn knuckle interconverts on the millisecond timescale between the major state, in which the zinc is coordinated by three cysteines and a histidine, and two folded minor species (with populations around 1 %) in which one of the coordination bonds (Cys413‐Sγ‐Zn or His421‐N?2‐Zn) is hydrolyzed. These findings explain why antiretroviral thioesters specifically disrupt the C‐Zn knuckle by initial acylation of Cys413, and show that transient, sparsely‐populated (“dark”), excited states of proteins can present effective targets for rational drug design.  相似文献   

19.
Ratiometric sensors for the detection of metal ions have gained increasing attention due to its self-calibration tendency for the environmental effects. In this context, we have synthesized and characterized a dual emitting ratiometric Zn(2+) probe (1) having acridinedione as a fluorophore and N,N-bis(2-pyridylmethyl)amine (BPA) as a receptor unit. Existence of two different conformation of the molecule with photoinduced electron transfer (PET) from amine moiety to the acridinedione fluorophore leads to dual emission, namely locally excited (425 nm) and anomalous charge transfer emission (560 nm) in aprotic solvents. In the presence of one equivalent of Zn(2+), a 15-fold fluorescence enhancement in the locally excited state together with the quenching of charge transfer emission is observed. The intensity changes at the two emission peaks allow a ratiometric detection of Zn(2+) under PET signaling mechanism. The utilization of PET process for the ratiometric fluorescence change will further signify the importance of PET mechanism in sensing action. Addition of Zn(2+) to 1 in acetonitrile/water mixtures shows a single emission peak with fluorescence enhancement.  相似文献   

20.
We have performed systematic theoretical studies to elucidate the factors governing the His protonation/deprotonation state in Zn-binding sites, especially those containing the ubiquitous Zn-His-Asp/Glu triad. Specifically, we have addressed the following three questions: (1) How does the transfer of the Zn-bound His imidazole proton to the second-shell Asp/Glu carboxylate oxygen depend on the composition of the other first-shell ligands and the solvent accessibility of the metal-binding site? (2) Can any second-shell ligand with a proton acceptor group such as the backbone carbonyl oxygen also act as a proton acceptor? (3) What is the effect of the Asp/Glu in the Zn-His-Asp/Glu triad on the Zn-bound water protonation state? To address these questions, we used a combination of quantum mechanical and continuum dielectric methods to compute the free energies for deprotonating a Zn-bound imidazole/water in various Zn complexes. The calculations show that whether the Zn-bound His is protonated or deprotonated depends on (1) the solvent accessibility of the metal-binding site, and (2) the Lewis acid ability of Zn, which is indirectly determined by both the first- and the second-shell Zn ligands. The calculations also show that the effect of the Zn-His-Asp/Glu interaction on the nucleophilicity of the Zn-bound water depends on the solvent accessibility of the catalytic Zn site. Furthermore, they show that the Asp/Glu side chain in the Zn-His-Asp/Glu triad can increase the negative charge of its partner, His, and create an anionic hole that may stabilize a cation in buried cavities, provided that the Zn complex is cationic/neutral. The findings of this work are in accord with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号