首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reflective phase shift of multilayer mirror is one important property required in EUV lithography and attosecond pulses experiments. The reflective phase shift of the periodic Mo/Si multilayer mirror was characterized by combining the reflectivity with total electron yield signal at the synchrotron radiation in Hefei. The multilayer was fabricated using direct current magnetic sputtering method. Using the wavelet transform approach, the period and each layer thickness were obtained, the small angle X-ray reflective data from X-ray diffractometer were fitted using these data as the mutilayer's initial structure. The TEY signal of the multilayer is coincided with the surface electron field of the multilayer. A thick Si layer was used to eliminate the effect of the multilayer's surface layer on the TEY signal. The retrieved difference in reflected phase from the incident phase was obtained combining the reflectivity with the total electron yield signal and it is similar with the calculated phase shift of the multilayer.  相似文献   

2.
林承友  陈淑静  刘大禾 《中国物理 B》2013,22(1):14210-014210
The improvement of attosecond pulse reflection by large angle incidence for periodic multilayer mirror in the extreme ultraviolet region has been discussed. Numerical simulations of both spectral and temporal reflection characteristics of periodic multilayer mirrors under various incident angles have been analyzed and compared. It was found that the periodic multilayer mirror under larger incidence angle can provide not only higher integrated reflectivity but also broader reflection band with negligible dispersion, making it possible to obtain better reflected pulse that owns higher pulse reflection efficiency and shorter pulse duration for attosecond pulse reflection. In addition, with increasing of incident angle, the promoting of attosecond pulse reflection capability has been proven for periodic multilayer mirrors with arbitrary layers.  相似文献   

3.
The improvement of attosecond pulse reflection by large angle incidence for a periodic multilayer mirror in the extreme ultraviolet region has been discussed. Numerical simulations of both spectral and temporal reflection characteristics of periodic multilayer mirrors under various incident angles have been analyzed and compared. It was found that the periodic multilayer mirror under a larger incidence angle can provide not only higher integrated reflectivity but also a broader reflection band with negligible dispersion, making it possible to obtain better a reflected pulse that has a higher pulse reflection efficiency and shorter pulse duration for attosecond pulse reflection. In addition, by increasing the incident angle, the promotion of attosecond pulse reflection capability has been proven for periodic multilayer mirrors with arbitrary layers.  相似文献   

4.
林承友  刘大禾 《中国物理 B》2012,21(9):94216-094216
The reflecting of single attosecond pulse from a periodic Mo/Si multilayer was investigated. With changing the number of bi-layers, the periodic multilayer showed greatly different spectral and temporal responses of the attosecond pulse reflection, which has been discussed in detail in this paper. The capability of attosecond pulse reflection of the periodic multilayers with different bi-layer numbers has been evaluated using suitable temporal parameters. In addition, the condition for obtaining high-efficiency reflected pulses has been analyzed by comparing the pulse responses of the periodic multilayer with different layers. The transfer-matrix method together with the fast Fourier transform has been used in our simulation.  相似文献   

5.
The reflecting of a single attosecond pulse from a periodic Mo/Si multilayer was investigated. By changing the number of bi-layers, the periodic multilayer showed greatly different spectral and temporal responses of the attosecond pulse reflection, which has been discussed in detail in this paper. The capability of attosecond pulse reflection of the periodic multilayers with different bi-layer numbers has been evaluated using suitable temporal parameters. In addition, the condition for obtaining high-efficiency reflected pulses has been analyzed by comparing the pulse responses of the periodic multilayer with different layers. The transfer-matrix method together with the fast Fourier transform has been used in our simulation.  相似文献   

6.
A novel multilayer mirror was designed and fabricated based on a recently developed three-material technology aimed both at reaching reflectivities of about 20% and at controlling dispersion over a bandwidth covering photon energies between 35 and 50 eV. The spectral phase upon reflection was retrieved by measuring interferences in a two-color ionization process using high-order harmonics produced from a titanium: sapphire laser. We demonstrate the feasibility of designing and characterizing phase-controlled broadband optics in the extreme-ultraviolet domain, which should facilitate the manipulation of attosecond pulses for applications.  相似文献   

7.
对超快过程的探测和控制决定了人类在微观层面认识和改造物质世界的能力.阿秒光源可完成对组成物质的电子运动及其关联效应进行超高时空分辨的探测和操控,为人类认识微观世界提供了全新手段,被认为是激光科学史上最重要的里程碑之一.世界主要科技强国都将阿秒科学列为未来10年重要的科技发展方向.利用强激光与物质相互作用产生高次谐波是突破飞秒极限实现高亮度阿秒脉冲辐射的重要方案之一,成为了近年来激光等离子体领域的研究热点.本文聚焦强激光与等离子体相互作用中的高次谐波和阿秒脉冲辐射,主要介绍其产生机制、研究进展和前沿应用,并对未来的发展趋势和创新突破进行展望.  相似文献   

8.
We present 1-on-1 and 10-on-1 damage threshold investigations on Mo/Si multilayers with EUV radiation of 13.5 nm wavelength, using a table-top laser produced plasma source based on solid gold as target material. The experiments were performed on different types of Mo/Si mirror, showing no significant difference in single pulse damage thresholds. However, the damage threshold for ten pulses is ??60?% lower than the single pulse threshold, implying a defect dominated damage process. Using Nomarski (DIC) and atomic force microscopy (AFM) we analysed the damage morphologies, indicating a primarily thermally induced damage mechanism. Additionally, we studied the radiation-induced change of reflectivity upon damage of a multilayer mirror.  相似文献   

9.
Christov IP 《Optics letters》2006,31(2):280-282
A method for reshaping and control of the duration of attosecond x-ray pulses in thin crystals is proposed. The finite width of the reflection and transmission curves around the Bragg angle allows one to engineer Fabry-Perot-type filters for the generation of a large variety of attosecond pulse shapes. The method considered here can be used to manipulate attosecond pulses produced by high-harmonic generation and also for shorter wavelengths for attosecond pulses from x-ray free-electron lasers. X-ray pulses with controllable amplitude and phase may find useful applications in the newly emerging area of attosecond time-resolved spectroscopy.  相似文献   

10.
Huo Y  Zeng Z  Leng Y  Li R  Xu Z  Guo C  Sun Z  Rhee Y 《Optics letters》2005,30(5):564-566
Attosecond-pulse extreme-ultraviolet (XUV) photoionization in a two-color laser field is investigated. Attosecond pulse trains with different numbers of pulses are examined, and their strong dependence on photoelectronic spectra is found. Single-color driving-laser-field-assisted attosecond XUV photoionization cannot determine the number of attosecond pulses from the photoelectronic energy spectrum that are detected orthogonally to the beam direction and the electric field vector of the linearly polarized laser field. A two-color-field-assisted XUV photoionization scheme is proposed for directly determining the number of attosecond pulses from a spectrum detected orthogonally.  相似文献   

11.
In the race toward attosecond pulses, for which high-order harmonics generated in rare gases are the best candidates, both the harmonic spectral range and the spectral phase have to be controlled. We demonstrate that multilayer extreme-ultraviolet chirped mirrors can be numerically optimized and designed to compensate for the intrinsic harmonic chirp that was recently discovered and that is responsible for temporal broadening of pulses. A simulation shows that an optimized mirror is capable of compressing the duration from approximately 260 to 90 as. This new technique is an interesting solution because of its ability to cover a wider spectral range than other technical devices that have already been proposed to overcome the chirp of high harmonics.  相似文献   

12.
A detection scheme for characterizing high-energy γ-ray pulses down to the zeptosecond timescale is proposed. In contrast to existing attosecond metrology techniques, our method is not limited by atomic shell physics and therefore capable of breaking the MeV photon energy and attosecond time-scale barriers. It is inspired by attosecond streak imaging, but builds upon the high-energy process of electron-positron pair production in vacuum through the collision of a test pulse with an intense laser pulse. We discuss necessary conditions to render the scheme feasible in the upcoming Extreme Light Infrastructure laser facility.  相似文献   

13.
林承友  尹亮  陈淑静  陈朝阳  丁迎春 《中国物理 B》2016,25(9):97802-097802
Using temporal and spectral methods,the effects of dispersion and filtering induced by Mo/Si multilayer mirrors reflection on incident attosecond pulses were studied.First,two temporal parameters,the pulse broadening factor,and the energy loss factor,were defined to evaluate the effects of dispersion and filtering.Then,by analyzing these temporal parameters,we investigated and compared the dispersion and filtering effects on attosecond pulses.In addition,we explored the origins of pulse broadening and energy loss by analyzing the spectral and temporal characteristics of periodic Mo/Si multilayer mirrors.The results indicate that the filtering effect induced by Mo/Si multilayer mirrors reflection is the dominant reason for pulse broadening and energy loss.  相似文献   

14.
We theoretically investigate the attosecond pulse generation in an orthogonal multicycle midinfrared two-color laser field. It is demonstrated that multiple continuum-like humps, which consist of about twenty orders of harmonics and an intensity of about one order higher than the adjacent normal harmonics, are generated when longer wavelength driving fields are used. By filtering these humps, intense isolated attosecond pulses(IAPs) are directly generated without any phase compensation. Our proposal provides a simple technique to generate intense IAPs with various central photon energies covering the multi-ke V spectral regime by using multicycle midinfrared driving pulses with high pump energy in the experiment.  相似文献   

15.
Lasers that provide an energy encompassed in a focal volume of a few cubic wavelengths (lambda(3)) can create relativistic intensity with maximal gradients, using minimal energy. With particle-in-cell simulations we found, that single 200 attosecond pulses could be produced efficiently in a lambda(3) laser pulse reflection, via deflection and compression from the relativistic plasma mirror created by the pulse itself. An analytical model of coherent radiation from a charged layer confirms the pulse compression and is in good agreement with simulations. The novel technique is efficient (approximately 10%) and can produce single attosecond pulses from the millijoule to the joule level.  相似文献   

16.
基于高次谐波产生的极紫外偏振涡旋光   总被引:1,自引:0,他引:1       下载免费PDF全文
突破传统涡旋光场束缚,发展短波极紫外涡旋光场是实现阿秒脉冲偏振控制的有效途径.本研究利用自制的平场光栅光谱仪和超快时间保持的单色仪,以800 nm,35 fs高斯或具有偏振奇点的涡旋光脉冲驱动诱导氩原子产生高次谐波,分别获得相应的高次谐波光谱以及谐波谱单阶光源的分布.实验结果表明,基于高次谐波产生实现近红外波段的涡旋光束特性转移到极紫外波段,优化后的极紫外涡旋可以实现每秒108光子数输出.同时发现极紫外波段的涡旋场和高斯场高次谐波产生具有相似相位匹配机制.基于高次谐波产生的极紫外波段的偏振涡旋光为探究和操控原子分子量子态的含时演化动力学以及形成阿秒矢量光束提供了重要的方法和技术手段.  相似文献   

17.
A method to characterize attosecond extreme ultra violet (XUV) pulses from photoelectron spectra of atoms is presented. A pump pulse prepares a coherent superposition of two atomic bound states, from which photoionization takes place after variable time delays by the attosecond XUV pulse. Information on the spectral phase of the attosecond XUV pulse is extracted from the analysis of photoelectron spectra as a function of photoelectron energy and time delay. Together with information on the spectral intensity obtained from a separate optical measurement, a temporal shape of the attosecond XUV pulse can be precisely reconstructed. After the theoretical formulation of the problem, we present numerical examples for H atom and show that, depending on the choice of energy separation of two bound states, a different accuracy is reached to characterize attosecond XUV pulses.  相似文献   

18.
Generation of attosecond electromagnetic(EM) pulses and the associated electron dynamics are studied using particle-in-cell simulations of relativistic laser pulses interacting with over-dense plasma foil targets. The interaction process is found to be so complicated even in the situation of utilizing driving laser pulses of only one cycle. Two electron bunches closely involved in the laser-driven wavebreaking process contribute to attosecond EM pulses through the coherent synchrotron emission process whose spectra are found to follow an exponential decay rule. Detailed investigations of electron dynamics indicate that the early part of the reflected EM emission is the high-harmonics produced through the relativistic oscillating mirror mechanism. High harmonics are also found to be generated through the Bremsstrahlung radiation by one electron bunch that participates in the wavebreaking process and decelerates when it experiences the local wavebreaking-generated high electrostatic field in the moving direction.  相似文献   

19.
A numerical simulation of attosecond harmonic pulse generation in a three-dimensional field-ionizing gas is presented. Calculated harmonic efficiencies quantitatively reproduce experimental findings. This allows a quantitative characterization of attosecond pulse generation revealing information currently not accessible by experiment. The rapid phase variation and spatiotemporal distortions of harmonics are smaller than anticipated, allowing focusing of 30-nm, 750-as pulses to intensities in excess of 10(13) W/cm(2). Feasibility of such pulses brings novel applications such as extreme ultraviolet nonlinear optics and attosecond pump probe spectroscopy within reach.  相似文献   

20.
黄沛  方少波  黄杭东  赵昆  滕浩  侯洵  魏志义 《物理学报》2018,67(21):214202-214202
操控多路激光脉冲之间的相对延时(相对相位)对于亚周期相干合成技术意义重大.当周期量级脉冲之间的相对延时接近数十飞秒时,常见的飞秒脉冲测量手段已无法满足脉冲之间相对相位的精确调控需求.本文基于瞬态光栅频率分辨光学开关装置,精确反演出脉冲之间的相对相位.此方案不仅有助于直接产生亚周期(亚飞秒)脉冲,还可应用于时间隐身学和二维相干光谱学等相关领域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号