首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 147 毫秒
1.
王蒙  马建泰  吕功煊 《分子催化》2019,33(5):461-485
在光催化全分解水产氢的过程中, Pt等助催化剂在催化产生氢的同时也会诱导催化氢气和氧气重新复合为水的逆反应,严重降低了悬浮体系光催化全分解水产氢的效率.我们综述了近年来在逆反应抑制方面的研究进展,总结和对比分析了各种抑制逆反应策略的特点,并对将这些方法应用于悬浮体系光催化全分解水制氢的前景进行了展望.  相似文献   

2.
光催化Z型水分解反应有望发展成为一种生产太阳氢能的有效方法.将具有优异水氧化性能的自然光系统Ⅱ与人工半导体产氢材料进行耦合,以构建生物-人工杂化光催化Z型水分解反应体系,对于深入理解自然光合作用原理和促进人工太阳能转化具有重要意义.由于Fe(CN)_6~(3-)可从光系统Ⅱ接受电子,因此氧化还原电对Fe(CN)_6~(3-/4-)成为研究光系统Ⅱ基杂化Z型水分解体系时常用的电子体递.然而,在该Z型水分解反应中,正向的产氢反应经常受到由Fe(CN)_6~(3-)引起的逆反应的阻碍,致使水分解过程中产氢产氧失衡,不能实现有效的全分解水反应.本文通过在光系统Ⅱ杂化Z型水分解体系中的人工光催化剂ZrO_2/TaON上沉积产氢助催化剂PtCrOx,有效抑制了逆反应的发生,从而使体系实现了全分解水反应.实验发现,在光催化剂ZrO_2/TaON上沉积金属Pt作为产氢助催化剂时,以Fe(CN)_6~(4-)为电子供体的光催化产氢半反应基本没有产氢活性,而当沉积氧化物PtCrO_x作为产氢助催化剂时,产氢半反应活性可提高至~35μmolh–1.进一步研究发现,这种产氢活性的差异主要是由于两种不同助催化剂对于Fe(CN)_6~(3-)引起的氢气氧化逆反应的催化行为不同.金属Pt表面对于氢气具有吸附和活化作用,光催化反应中产生的氢气和Fe(CN)_6~(3-)在Pt-ZrO_2/TaON催化作用下发生快速的氧化还原逆反应;而由于PtCrO_x表面对氢气的吸附和活化作用较弱,上述氢气氧化的逆反应在PtCrO_x-ZrO_2/TaON存在时不发生.此外,在产氢过程中,光生电子虽然迁移到助催化剂PtCrO_x上,但PtCrO_x中高氧化态的Pt~Ⅱ和Pt~Ⅳ并未被还原,因此使PtCrO_x-ZrO_2/TaON具有稳定的光催化产氢反应活性.基于PtCrO_x-ZrO_2/TaON在Fe(CN)_6~(4-)作为电子供体时有效的产氢半反应,我们以Fe(CN)_6~(3-/4–)作为电子递体,将光系统Ⅱ与PtCrOx-ZrO_2/TaON耦合构建了生物-人工杂化Z型全分解水体系,通过调节Fe(CN)_6~(3-)/4–的初始浓度,最终实现了杂化体系的全分解水反应,产氢和产氧活性分别为~20μmol H_2 h~(–1)和~10μmol O_2 h~(–1).这为理解和抑制以Fe(CN)_6~(3-)/4–作为电子递体的光系统Ⅱ-人工杂化Z型水分解体系中的逆反应提供了新的思路.  相似文献   

3.
水的光催化分解在悬浮于水溶液里的各种Pt/TiO_2光催化剂上进行。当体系引入CO时,氢的产量大大提高,并得到了符合化学计量的氢和CO_2。实验证明氢和氧确实来源于水的光分解。TiO_2的预处理条件对于Pt/TiO_2的光催化活性影响很大,经过700℃氢气还原的TiO_2(锐钛矿)制成的催化剂性能较好。  相似文献   

4.
近年来,作为替代贵金属铂催化剂的铁、钴和镍等非贵金属配合物分子催化剂,由于合成容易、结构调控方便以及具有良好的催化活性等特点,成为均相光催化分解水产氢领域的研究热点.其中,钴配合物具有结构简单、成本低廉、容易合成以及具有理想的氧化还原电位等优势,更是光催化分解水产氢领域的优先研究对象.由于稳定性及溶解度的问题,在已报道的研究工作中,大部分钴配合物测试环境均在有机溶剂或有机溶剂/水混合溶剂中.因此,寻找水溶性良好的钴配合物催化剂成为了目前的均相光催化分解水产氢领域的研究焦点之一.在此之前,氨基硫脲配合物已经广泛用于生物和制药等研究,例如:抗氧化、抗菌以及抗病毒等领域.而在人工光合产氢领域采用氨基硫脲配合物作为催化剂的例子则比较罕见.在该项研究中,我们报道了一对水溶性较好(40 mg mL~(–1),20°C)且具有几何异构特征的八面体钴-氨基硫脲配合物作为光、电催化质子还原产氢的分子催化剂.这对几何异构体分别为:面式异构体[Co(Htsc)_3]Cl_3·3H_2O(C1,Htsc=氨基硫脲配体)和经式异构体[Co(Htsc)_3]Cl_3·4H_2O(C2).我们将几何异构体C1和C2作为水还原分子催化剂,与有机光敏剂荧光素一起构筑了不含贵金属成分的光催化分解水产氢体系.在三乙胺作为牺牲剂及纯水环境中,体系展现出了良好的光催化制氢性能.可见光照15 h后,体系产氢相对于催化剂的TON接近900.对比实验结果表明,具有这对几何异构的C1和C2具有相似的光催化产氢性能,暗示其催化机理的相似性.汞中毒实验结果表明,光催化分解水产氢过程中并没有钴纳米胶体形成,可以确定这是一个均相光催化分解水产氢体系.在纯水环境下,我们将C1和C2与传统的钴配合物(钴肟配合物:[Co(dmgH)_2pyCl](dmg H=丁二酮肟,py=吡啶);联吡啶钴配合物:[Co(bpy)_3Cl_2](bpy=2,2'-联吡啶))的催化活性进行对比.结果表明,催化剂C1和C2展现出了较强的光催化产氢活性.此外,电催化实验表明,在乙腈中且乙酸作为质子源的条件下,C1和C2具有相同的电催化活性,过电位接近640毫伏,催化转化频率(TOF)为每秒210.同时,在pH=7的磷酸盐缓冲溶液中,C1和C2也同样表现出对水分子的电催化产氢性能,过电势为560毫伏.这是当前第一例具有几何异构体的分子催化剂对光、电催化产氢体系影响的工作.  相似文献   

5.
光催化转化CO2为碳氢燃料,分解水产氢,选择性有机合成,还原N2为NH3,降解毒害的有机污染物等对解决能源环境问题有重要意义。早在1972年,研究者利用TiO2通过光催化实现了全面分解水产氢和产氧。由于低的可见光利用率,严重的载流子复合和过高的水氧化能垒导致光催化全面水分解的效率极低。由于氢相对于氧更具有经济价值,因此牺牲剂辅助的光催化产氢被大量研究。由于牺牲剂可以快速的消耗光生空穴,有效降低了氧化端的能垒,光催化产氢的效率相比于光催化水分解的效率提高了3–4个量级。然而,牺牲剂的使用不仅导致了光生空穴的浪费,成本的提高,还导致了潜在的环境问题。近些年,研究者通过将光催化还原反应和光催化氧化反应结合在一起实现了电子空穴的全面利用,并改进了氧化和还原的效率。同时,电子空穴的全面利用也有效的促进了电荷的分离并提高了催化剂的稳定性。然而,由于全面氧化还原的设计难度大,反应过程复杂,因此光催化全面氧化还原的机理尚不够明确,仍然需要大量的探索。在这篇综述中,首先从光捕获、光激发电荷分离、氧化还原反应的热力学和...  相似文献   

6.
由完全分解水的特殊性出发,从材料的结构和能带设计以及材料的表面修饰等方面对完全分解水光催化剂的研制及其分解水产氢产氧性能进行了评述.介绍了Z型体系在完全分解水制氢方面的原理,以及目前已经开发出来的几个Z型体系.对光催化完全分解水研究中存在的问题进行了简单分析.  相似文献   

7.
光催化“全”分解水制H_2与牺牲体系产H_2的关系   总被引:1,自引:1,他引:0  
多相光催化"全"分解水制H_2的研究已走过约40年路程,至今未获得真正的突破,目前国内、外发表的许多可见光催化牺牲体系放H_2的文章,虽然它在氢离子还原机理方面有一定的参考意义,但它不能解决光催化"全"分解水制H_2问题,本文提醒我国光催化界:勿把可见光牺牲体系产H_2研究的结果,当成我们在分解水制H,方面取得的进展,应认真总结过去失败的经验教训,兼顾热力学和动力学两方面的要求,制订出正确的"全"分解水制H_2催化剂的研究策略。  相似文献   

8.
光催化降解污染物制氢反应与原位红外表征   总被引:6,自引:0,他引:6  
研究了在Pt/TiO2悬浮体系中单组分和双组分污染物为电子给体光催化分解水制氢反应. 比较了污染物甲醛、甲酸和草酸为电子给体光催化放氢反应效率,发现其活性为:草酸 >甲酸 >甲醛.原位ATR(衰减全反射)红外研究结果表明,光催化放氢活性与污染物吸附特性有关.还研究了草酸与甲酸双组分污染物体系的光解水放氢和污染物降解动力学,发现总的放氢和污染物降解速率与污染物组分在TiO2表面的吸附强度和溶液浓度有关.污染物在TiO2表面的竞争吸附决定了反应动力学.原位ATR-IR方法研究双组分混合物体系的吸附,直观地证实了上述结果.  相似文献   

9.
TiO2/石墨烯复合材料的合成及光催化分解水产氢活性   总被引:1,自引:0,他引:1  
利用石墨粉根据Hummers氧化法制得氧化石墨,并进一步还原得到石墨烯。采用溶胶-凝胶法以钛酸四丁酯和石墨烯为起始材料制备了二氧化钛(TiO2)和石墨烯的复合光催化材料。研究了该复合材料在紫外-可见光以及可见光条件下的光催化分解水制氢活性。结果表明,紫外-可见光照射下,TiO2/石墨烯复合光催化材料的光催化分解水产氢速率为8.6 μmol·h-1,远大于同条件下商业P25的产氢速率 (4.5 μmol·h-1),光解水产氢活性提高了近2倍;可见光下光照3 h,TiO2/石墨烯复合材料的光催化分解水产氢量约为0.2 μmol。  相似文献   

10.
Pt/TiO2光催化分解四硼酸钾水溶液制氢   总被引:1,自引:1,他引:1  
靳治良  吕功煊 《分子催化》2005,19(2):150-154
研究了以四硼酸钾溶液作反应体系,在1%Pt/TiO2光催化剂的作用下光催化分解水制氢的反应,发现该体系能使放氢速率明显提高.放氢速率还随B4O7^2-浓度的增大而增大.在此基础上,还对B4O7^2-的作用机理进行了探讨,BRO7^2-在该反应体系中主要是通过物理作用有效的阻止了逆反应的发生,从而使放氢速率得以提高.  相似文献   

11.
Ternary chalcogenide silver gallium sulfide (AgGaS2), which has an orthorhombic structure, was already synthesized. However, the feasibility of using the crystal for hydrogen production through photocatalytic water splitting has not been explored. Here, we systematically investigated the structural, electronic, optical, and transport properties of XGaS2 (X = Ag or Cu) with orthorhombic structure by using the first principles calculations. The band alignments indicate that all calculated absolute potentials of the valence and conduction band edges met the requirement of photocatalytic water splitting reaction. The presence of 2.64 and 2.56 eV direct band energy gaps and obvious optical absorption within the visible light range imply that XGaS2 can correspond to solar light. Moreover, the large electron mobility and the obvious differences between electron mobility and hole mobility were identified in XGaS2 structures, which is beneficial to the photocatalytic performance of the water splitting reaction. The present findings can provide a helpful reference for developing novel photocatalytic materials with XGaS2 for hydrogen generation from water splitting under irradiation of visible light.  相似文献   

12.
Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H2/O2 gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe3+/Fe2+. Well‐defined BiVO4 crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar‐to‐chemical efficiency over 1.9 % and a solar‐to‐hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.  相似文献   

13.
太阳能光催化分解水制氢是太阳能制氢的最佳途径之一.选择CdS为敏化剂,制备了可见光响应的CdS复合钛酸纳米管光催化剂.以所制备的光催化剂在不同模拟有机污染物中的光催化产氢活性进行研究,对有机物浓度、pH值等反应参数进行了考察,并对其产氢机理进行了分析.研究发现各类有机物中,甲酸溶液中产氢量活性最高.分别考察了10%、2...  相似文献   

14.
设计、合成了一系列4,5,9,10-四芳基喹嗪并喹啉衍生物,并在均相光解水制氢体系中研究其光敏活性。研究结果表明,二氯化钯是其有效制氢的催化剂,还原淬灭是光敏剂的主要淬灭途径。通过光电物理化学性能研究表明,这类喹嗪并喹啉衍生物的取代基效应明显,而甲氧基有利于提高其荧光量子效率,最高可达0.48;同时供电子甲氧基取代基能明显提高光敏剂制氢性能,光敏剂3e的制氢总转换数(TON)可达341。  相似文献   

15.
李仁贵 《催化学报》2017,38(1):5-12
能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO3:La,Rh/Au/BiVO4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO4和Ta3N5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta3N5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在多个体系上已超过10%以上,最近报道的利用多结GaInP/GaAs/Ge电池与Ni电催化剂耦合,其太阳能制氢效率可达到22.4%.虽然该种制氢途径的效率已超过其工业化应用的要求,但是光伏电池的成本(尤其是多结GaAs太阳电池)极大限制了其大面积规模化应用,同时还要考虑电催化剂的成本和效率等,光伏-光电耦合制氢是成本最高的太阳能制氢途径.需要指出的是,光伏-光电耦合制氢有望在一些特殊的领域最先取得实际应用,如为外太空航天器、远洋航海以及孤立海岛等传统能源无法满足的地方提供能源供给.总之,太阳能分解水制氢研究取得了一系列重要进展,太阳能制氢效率得到了大幅度提升,也是目前世界范围内关注的研究热点之一,不仅具有强的潜在工业应用背景,更为基础科学提供了诸多新的研究课题.这一极具挑战的研究领域,在先进技术快速发展和基础科学问题认识不断提高的基础上,不久的将来,有望在不久的将来在基础科学和应用研究方面取得重大突破.  相似文献   

16.
基于半导体的太阳能光催化分解水制氢技术是一种环境友好、潜力巨大的绿色氢能制造方案.常用的块体半导体材料一般具有较弱的可见光吸收、快速的光生载流子复合以及较低的光催化制氢效率等缺点.因此,设计开发具有宽光谱光吸收、稳定性好、催化活性高的太阳能光催化材料是促进光催化制氢发展的关键,也是该研究方向的挑战之一.硫化镉纳米材料是...  相似文献   

17.
通过半导体光催化分解水反应实现太阳能向清洁能源氢能的转化,是解决人类面临的能源和环境危机的终极途径之一。该过程的关键是开发宽光谱响应、高效的光催化剂,到目前为止,调控能带结构、制备活性晶面、构建异质结构、负载助催化剂等诸多方法被广泛应用于扩展半导体材料的吸光范围和提高其光催化活性。本文介绍了半导体光解水制氢的基本原理,并综述了该领域的研究进展,重点关注提高半导体光催化活性的方法及其所面临的挑战和瓶颈问题,并结合相关课题组的研究工作提出可能的应对策略。  相似文献   

18.
通过半导体光催化分解水反应实现太阳能向清洁能源氢能的转化,是解决人类面临的能源和环境危机的终极途径之一。该过程的关键是开发宽光谱响应、高效的光催化剂,到目前为止,调控能带结构、制备活性晶面、构建异质结构、负载助催化剂等诸多方法被广泛应用于扩展半导体材料的吸光范围和提高其光催化活性。本文介绍了半导体光解水制氢的基本原理,并综述了该领域的研究进展,重点关注提高半导体光催化活性的方法及其所面临的挑战和瓶颈问题,并结合相关课题组的研究工作提出可能的应对策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号