首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The role of chemical kinetics in defining the requirements for the active sites of heterogeneous catalysts is discussed. A personal view is presented, with specific examples from our laboratory to illustrate the role of the chemical composition, structure, and electronic properties of specific surface sites in determining reaction activity and selectivity. Manipulation of catalytic behavior via the addition of chemical modifiers and by tuning of the reaction conditions is also introduced.  相似文献   

3.
Mitochondrial ATPase from rat liver mitochondria contains multiple nucleotide binding sites. At low concentrations ADP binds with high affinity (1 mole/mole ATPase, KD = 1-2 muM). At high concentrations, ADP inhibits ATP hydrolysis presumably by competing with ATP for the active site (KI = 240-300 muM). As isolated, mitochondrial ATPase contains between 0.6 and 2.5 moles ATP/mole ATPase. This "tightly bound" ATP can be removed by repeated precipitations with ammonium sulfate without altering hydrolytic activity of the enzyme. However, the ATP-depleted enzyme must be redissolved in high concentrations of phosphate to retain activity. AMP-PNP (adenylyl imidodiphosphate) replaces tightly bound ATP removed from the enzyme and inhibits ATP hydrolysis. AMP-PNP has little effect on high affinity binding of ADP. Kinetics studies of ATP hydrolysis reveal hyperbolic velocity vs. ATP plots, provided assays are done in bicarbonate buffer or buffers containing high concentrations of phosphate. Taken together, these studies indicate that sites on the enzyme not directly associated with ATP hydrolysis bind ATP or ADP, and that in the absence of bound nucleotide, Pi can maintain the active form of the enzyme.  相似文献   

4.
We report on the catalytic effects by alkali-metal ions in the ethanolysis of p-nitrophenyl diphenyl phosphate, in continuation of our studies on alkali-metal ion catalysis and inhibition in nucleophilic displacement reactions at carbon, phosphorus and sulfur centres. The following selectivity order of catalytic reactivity was observed for nucleophilic displacement at the phosphorus center with p-nitrophenoxide as leaving group: Li+ > Na+ > K+ > Cs+. A minor reaction pathway with phenoxide leaving was also found. The kobs data have been dissected into reaction pathways by free ions (kEtO) and by ion pairs (kMOEt), with the latter being dominant, in a 4-membered transition-state. Further analysis is given in terms of initial-state and transition-state stabilization by the alkali-metal ions in terms of the Eisenman model (electrostatic interaction vs. desolvation). Results of ab-initio MO calculations are presented based on interaction between M+ and a model bipyramidal phosphorane intermediate and compared with the sulfurane analogue.  相似文献   

5.
An efficient sustainable and scalable strategy for the synthesis of porous cobalt/nitrogen co-doped carbons(Co@NCs) via pyrolysis of aniline-modified ZIFs,has been demonstrated.Aniline can coordinate and absorb on the surface of ZIF(ZIF-CoZn3-PhA),accelerate the precipitation of ZIFs,thus resulting in smaller ZIF particle size.Meanwhile,the aniline on the surface of ZIF-CoZn3-PhA promotes the formation of the protective carbon shell and smaller Co nanoparticles,and increases nitrogen content of the catalyst.Because of these prope rties of Co@NC-PhA-3,the oxidative esterification of 5-hydroxymethylfurfural can be carried out under ambient conditions.According to our experimental and computational results,a synergistic catalytic effect between CoN_x sites and Co nanoparticles has been established,in which both Co nanoparticles and CoN_x can activate O_2 while Co nanoparticles bind and oxidize HMF.Moreover,the formation and release of active oxygen species in CoN_x sites are reinfo rced by the electronic interaction between Co nanoparticles and CoN_x.  相似文献   

6.
7.
正Chemical reactions catalyzed by solid catalysts have recently expanded rapidly from traditional heterogeneous catalytic reactions to photocatalytic reactions and further to plasmonic-catalytic reactions,however,the fundamental understanding of the commonalities and differences among heterogeneous catalysis,  相似文献   

8.
We report a catalytic asymmetric reaction process that involves the use of solid-phase reagents and catalysts that constitute the packing of a series of "reaction columns". This process was applied to the catalytic asymmetric synthesis of beta-lactams, to yield pure products with excellent enantio- and diastereoselectivity. We have identified several advantages to conducting chemical reactions on sequential columns, including ease of catalyst and reagent recovery and simplified purification steps that preclude the need for chromatography.  相似文献   

9.
10.
Out of several tries, biotinylation of the electrode surface by means of a sacrificial biotinylated immunoglobulin, followed by the anchoring of an avidin-enzyme conjugate appears as the best procedure for depositing a horseradish peroxidase (HRP) monolayer onto an electrode surface, allowing a high-yield immobilization of the enzyme within a stable and highly catalytic coating. Cyclic voltammetry is an efficient means for analyzing the catalytic reduction of H(2)O(2) at such HRP monolayer electrodes in the presence of [Os(III)(bpy)(2)pyCl](2+) (with bpy = bipyridine and py = pyridine) as a one-electron reversible cosubstrate. The odd shapes of current-potential responses, unusual bell-shaped variation of the peak or plateau current with the substrate concentration, hysteresis and trace crossing phenomena, and dependence or lack of dependence with the scan rate, can all be explained and quantitatively analyzed in the framework of the same catalysis/inhibition mechanism as previously demonstrated for homogeneous systems, taking substrate and cosubstrate mass transport of into account. According to H(2)O(2) concentration, limiting-behavior analyses based on the dominant factors or complete numerical simulation were used in the treatment of experimental data. The kinetic characteristics derived from these quantitative treatments implemented by the determination of the amount of enzyme deposited by the newly developed droplet depletion method allowed a comparison with homogeneous characteristics to be drawn. It shows that HRP remains nearly fully active once anchored on the electrode surface through the avidin-biotin linkage. On the basis of this full mechanistic and kinetic characterization, the analytical performances in H(2)O(2) detection and amperometric immunosensor applications are finally discussed.  相似文献   

11.
The mechanism of catalytic reduction of folic and dihydrofolic acids to tetrahydrofolate, which proceeds under the action of dihydrofolate reductase and the coenzyme NADPH, is considered. The roles of the enzyme active site, the coenzyme, individual amino acid residues of the enzyme, and water molecules in the catalytic reaction are discussed. Interactions of the enzyme with competitive inhibitors many of which are widely used in medicine as antitumor and antibacterial drugs are examined. The factors controlling the selectivity of inhibitor binding to bacterial forms of the enzyme are analyzed. The results of X-ray diffraction and NMR spectroscopic studies of the structures of the enzyme and its complexes with the substrate and inhibitors are surveyed. The role of specific interactions and molecular motions of the protein and ligands in the mechanism of catalysis and in the binding of the ligands to the enzyme is discussed.  相似文献   

12.
The phase behavior and component composition of the coexisting phases in the tetrabutylammonium bromide (TBABr)/benzene/water/NaBr four-component system were strongly influenced by the temperature, TBABr content, and NaBr concentration. The phase-transfer catalytic activity of TBABr for the reaction of decyl methanesulfonate with sodium bromide was closely related to the phase behavior. Under O (oil-rich phase) + L (TBABr-rich liquid phase) + W (aqueous phase) triphase conditions, the influences of temperature and stirring speed on the phase-transfer catalytic activity were small compared with those under O + W biphase conditions. The addition of other quaternary salts that were able to form w/o aggregates in the O phase enhanced the TBABr catalytic activity even under O + W conditions. The relationship between phase behavior and catalytic activity of tetrabutylammonium chloride or iodide (TBACl or TBAI) was also examined. The results strongly suggested that the catalysis of TBAX was attributable to the interfacial reactions of TBAX with the substrate. The interface includes the water-oil microinterface formed in the microemulsion-like L phase as well as the bulk water-oil interface.  相似文献   

13.
The model catalytic sites, proposed in our group for the homogeneous and heterogeneous stereospecific Ziegler- Natta polymerizations of olefins, are reviewed. For all the homogeneous metallocene-based as well as for the heterogeneous catalytic models, a common mechanism of enantioselectivity is indicated by the study of the non-bonded interactions. This mechanism of enantioselectivity, which involves a chiral orientation of the growing chain, is in agreement with a large number of experimental results for these catalytic systems. The model sites for the homogeneous isospecific polymerization of propene are also able to account for the observed enantioselectivities in the regioirregular placements. Recent calculations relative to a peculiar catalytic model site, which should present a polymerization mechanism involving a regular back-skip of the chain, to the starting position after each monomer insertion, are shortly reviewed. The relevance of this polymerization mechanism to the comprehension of the stereospecificity of some homogeneous and heterogeneous catalytic systems is also briefly discussed.  相似文献   

14.
The main aim of this work is to discriminate the closely related adsorption and catalytic degradation processes that occur during a photocatalytic reaction. Very high-surface-area TiO2 and Pd-doped TiO2 were synthesized by microwave-assisted hydrothermal synthesis and used for degradation of methylene blue as a model pollutant dye. Thorough structural, morphological, and surface analyses of the synthesized catalysts were conducted to investigate key material properties that influence adsorption and catalytic performance. The adsorption capacity of the catalysts was determined by fitting adsorption data using the Langmuir isotherm model, and the photocatalytic activity of the synthesized samples was evaluated by periodically measuring the concentration of methylene blue as it was photocatalytically degraded under ultraviolet (UV) light. The results indicated that noble-metal incorporation compromised adsorption but favored catalytic performance.  相似文献   

15.
This article is a review of research on metallocomplex catalysis of radical reactions — chain breaking and hydroperoxide decomposition — that lead to inhibition of the oxidation of organic compounds by molecular oxygen. Information on the mechanisms and applied aspects of metallocomplex catalysis of these reactions is summarized and correlated.As in Russian original — Translator.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 29, No. 1, pp. 3–18, January–February, 1993.  相似文献   

16.
17.
18.
Chymotrypsin catalysis. Evidence for a new intermediate   总被引:8,自引:0,他引:8  
  相似文献   

19.
Catalytic hydrophosphination is a useful technique for the synthesis of phosphines, however, the phosphine products have been little exploited as ligands in catalysis. We have selected three phosphines prepared by iron catalyzed hydrophosphination and used them as ligands in a series of cross-coupling reactions: Heck, Suzuki-Miyaura and Buchwald-Hartwig. Rather than limit the chemistry to simple cross-coupling partners which are almost guaranteed to perform well in these transformations, industrially relevant substrates which are challenging from and electronic and/or steric perspective, along with substrates which contain several heteroatoms, were explored in order to gauge the true potential of these phosphine ligands.  相似文献   

20.
Quantitative Structure-Selectivity Relationships (QSSR) are developed for a library of 40 phase-transfer asymmetric catalysts, based around quaternary ammonium salts, using Comparative Molecular Field Analysis (CoMFA) and closely related variants. Due to the flexibility of these catalysts, we use molecular dynamics (MD) with an implicit Generalized Born solvent model to explore their conformational space. Comparison with crystal data indicates that relevant conformations are obtained and that, furthermore, the correct biphenyl twist conformation is predicted, as illustrated by the superiority of the resulting model (leave-one-out q(2) = 0.78) compared to a random choice of low-energy conformations for each catalyst (average q(2) = 0.22). We extend this model by incorporating the MD trajectory directly into a 4D QSSR and by Boltzmann-weighting the contribution of selected minimized conformations, which we refer to as '3.5D' QSSR. The latter method improves on the predictive ability of the 3D QSSR (leave-one-out q(2) = 0.83), as confirmed by repeated training/test splits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号