首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the methods reported by Ambler and Kraus, a method has been developed for the determination of long-chain branching distribution in polymers by the combined use of GPC and intrinsic viscosity data of polymer fractions. In this method, g_i, λ_i, G_i, m_i, the weight percentage of polymer that is branched, etc. can be used simultaneously to characterize the distribution, degree and content of branching in polymers. Some relations between molecular weight polydispersity and branching polydispersity in Nickel-based high cis-1,4-polybutadiene samples are discussed. It was found that the number of long branches λ. per unit molecular weight is a function of molecular weight and all of the samples are highly branched at a molecular weight of about 10~6.  相似文献   

2.
We have previously reported a novel (albeit modestly successful) strategy for the synthesis of polystyrene HyperMacs - long chain branched analogues of hyperbranched polymers. The building blocks for HyperMacs, AB2 macromonomers are synthesized by living anionic polymerization and as such are well-defined in terms of molecular weight and polydispersity but the nature of the coupling reaction used to generate the highly branched HyperMacs results in branched polymers with a distribution of molecular weights and architectures. In our previously reported studies the extent of the coupling reaction was significantly hampered by side reactions, however, we report here dramatic improvements to the coupling chemistry which overcome the previously experienced limitations resulting in a fourfold increase in the extent of the coupling reactions. Furthermore we report the effect of the addition of varying amounts of a B3 core molecule to the coupling reaction and the resultant ‘control’ of the final molecular weight of the HyperMac. Melt rheology showed polystyrene HyperMacs to be thermorheologically simple, obeying William-Landel-Ferry (WLF) behaviour. HyperMacs showed little evidence for relaxation by reptation and when the molecular weight of the macromonomer was ?Me for polystyrene, HyperMacs resemble unentangled polymers below the gel point, despite being well above the entanglement molecular weight for linear polystyrene. Increasing the molecular weight of the macromonomer to substantially above Me seems to introduce some entangled nature to the HyperMac as evidenced by the emergence of a near horizontal plateau in G″ - the loss modulus.  相似文献   

3.
In metallocene polymerization, termination by β-hydride elimination generates polymer chains containing unsaturated vinyl groups at their chain ends. Further polymerization of these macromonomers produces branched polymers. Material properties of the branched polymers not only depend on molecular weight and branching density, but also on chain structure. This work presents analytical expressions to predict the bivariate distribution of molecular weight and branching density for polymer chains having dendritic and comb structures. It is shown that when a single metallocene catalyst is used the formation of dendritic polymers is favored with only a very small fraction of highly branched chains assuming comb structure. The use of a binary catalyst system is therefore proposed to obtain high content of comb polymers. One catalyst generates macromonomers and the other yields in-situ branching. It is found that the comb polymers give much narrower molecular weight distributions than dendritic polymers with same branching densities.  相似文献   

4.
The addition of small amounts of polyfunctional agents can substantially alter the melt and the solid-state properties of polymers. A practical characterization scheme is necessary for control of polymer preparation and for process analysis. Trifunctionally branched samples of poly(2,2′-oxydiethylene trans-1,4-cyclohexanedicarboxylate) have been prepared as representative of polycondensation polymers. The Drott-Mendelson procedure was applied to the dilute solution data from gel permeation chromatography and intrinsic viscosity to yield the true molecular weight distributions and the average branching frequency. The melt zero-shear-rate viscosity of a branched sample was less than that of a linear sample of equal weight-average molecular weight, in good agreement with Bueche's theory. The melt elasticity, as measured by the terminal relaxation time, was equal to that of the equivalent linear polymer at constant weight-average molecular weight.  相似文献   

5.
The technique for determining branching in polymers by using a combination of GPC and intrinsic viscosity data has been extended beyond current methods. Equations used in these analyses are presented. The derivations are based upon the assumption that branching is present only when there is a measurable reduction in the intrinsic viscosity. Techniques for calculating the functionality of the star branch point in starbranched polymers are given. Three random-branching parameters are calculated from a knowledge of the average branching density, \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \lambda $\end{document}: (a) the lowest molecular weight branched polymer that can be measured, M?*; (b) the average molecular weight between branch points, M?bp; (c) the weight percentage of polymer that is branched. The applicability of this technique is demonstrated by using an analysis of published data on characterized fractions of a randomly branched polystyrene.  相似文献   

6.
Branched polystyrenes have been synthesized using atom transfer radical polymerization (ATRP) of styrene in the presence of divinyllbenzene (DVB) as branching comonomer. The synthesis was completed via facile one pot approach. Mole ratio of styrene to DVB in range of 5:1-30:1 was employed to obtain soluble polymers. The kinetics of the polymerization and evolution of polymer compositions were revealed by determining the conversions of reactants by gas chromatography (GC). The growth of molecular weight was monitored by GPC and the results indicate that the branched polymers were formed by self-condensing vinyl polymerization (SCVP) of AB monomer or macromonomers. The branched structure of the resulting polymers was confirmed by the remarkable discrepancies of the weight average molecular weights determined by GPC and multi angle laser light scattering (MALLS). The specific viscosity of the resulting polymer is also much lower compared with that of linear analogues. The influence of dosage of initiator and catalyst on the yield and molecular weights of the resulting polymers was also investigated.  相似文献   

7.
The self-condensing vinyl polymerization of 4-(chloromethyl)styrene using metal-catalyzed living radical polymerization catalyzed by the complex CuCl/2,2′-bipyridyl has been attempted. Given the unequal reactivity of the two potential propagating species in this system, a variety of polymerization conditions were tested to optimize the extent of branching in the products. Typical reaction conditions included polymerization in the bulk, or preferably in chlorobenzene solution, with catalyst to monomer ratios in the range 0.01–0.30, temperatures of 100–130°C, and reaction times from 0.1 to 32 h. Polymers with weight average molecular weights between 3 × 103 and 1.6 × 105 and different extents of branching are formed as evidenced by size-exclusion chromatography, light scattering, and NMR analysis of the reaction products. The influence of reaction conditions on the molecular weight and branching of the resulting polymers is discussed in detail. In sharp contrast to an earlier report, the weight of evidence suggests that, at a catalyst to monomer ratio of 0.01, an almost linear polymer is obtained, while a high catalyst to monomer ratio favors the formation of a branched structure. As a result of the unequal reactivity of the primary and secondary benzylic halide reactive sites, growth occurs by a modified self-condensing vinyl polymerization mechanism that involves incorporation of the largely linear vinyl-terminated fragments formed early on in the polymerization into the vinyl polymer, to afford an irregularly branched structure. Chemical transformations involving the numerous benzylic halide functionalities of the highly branched polymer have been investigated. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 955–970, 1998  相似文献   

8.
Different chlorine-free alkylaluminum compounds were active cocatalysts for ethylene polymerization in the presence of 1,4-bis(2,6-diisopropylphenyl)-acenaphthenediimine-dichloronickel (II) (1). The combination of 1 with trimethylaluminum or triisobutylaluminum produced catalytically active species that polymerized ethylene with productivities up to 469 kgpolymer/(molNi · h). The activity of the catalytic system and the properties of the polymeric materials were influenced strongly by the reaction temperature. The polymers had a high molecular weight (up to 642 × 103 g · mol−1), and the molecular weight increased with the reaction time. The polyethylenes were branched, and the branching could be modulated by the proper choice of reaction parameters. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4656–4663, 1999  相似文献   

9.
Three pyridylimine based complexes of NiII and CoII were reacted with methylaluminoxane (MAO) and tested as catalysts in ethylene polymerization. The two nickel catalysts produced mainly methyl branched polymers with good to moderate activity, while the cobalt compound showed only marginal activity. Reaction conditions strongly affect the polymer properties, such as molecular weight, melting temperature, degree of branching, and chain end unsaturation type.  相似文献   

10.
Branched polymers like LDPE are known to possess a wide range of architectures. In this paper a modelling approach is developed, describing the relation between architectures, chemistry and reactor conditions with the general objective of improving characterisation and controlling visco‐elastic properties. More specifically, the particular scission kinetics of branched molecules as strongly contrasting with linear scission is described. A new method to synthesise branched architectures is developed as an alternative to full Monte Carlo (MC) sampling. It employs MC sampling for coupling of primary polymers only. Graph theory is used as an efficient storage method containing all topological information of individual molecules. The algorithm synthesises molecules for any given combination of chain length (n) and number of branches (N). The explicit and detailed knowledge of branched architectures allows finding the correct topological scission kinetics. Distributions of fragment lengths and numbers of branches on fragments after scission are obtained, showing a preference for short and long fragments. Approximate functions describing this have been implemented in another model, predicting molecular weight (MWD) and degree of branching (DBD) distributions using a Galerkin finite element method. Topological scission is seen to give MWD broadening and a higher branching density for long chains. Distributions of longest end‐to‐end distances could be computed for all architectural alternatives for given n, N. In conclusion, it is demonstrated that this method yields distributions of architectures consistent with MWD/DBD for radical polymerisation with long‐chain branching and random scission.  相似文献   

11.
双烯化合物类单体合成支化聚合物的支化结构的研究   总被引:1,自引:0,他引:1  
分别以二乙烯基苯(DVB)、双甲基丙烯酸二缩三乙二醇酯(tri-EGDMA)和1,6-双马来酰亚胺基正己烷(BMIH)为支化单体,采用原子转移自由基聚合合成支化聚苯乙烯;以先核后臂法合成的星状支化聚苯乙烯为参照对合成的支化聚合物的支化形态进行研究.采用气相色谱(GC)、核磁共振氢谱(1H-NMR)和三检测凝胶渗透色谱(TD-SEC)测定了苯乙烯的转化率,聚合物分子量及其分布,特性黏数和均方回转半径.实验结果表明3个支化聚合反应体系内悬垂双键是逐步消耗的,不存在明显的成核过程.反应前期,以形成带有悬垂双键的初级链和轻度支化聚合物为主,聚合物分子量随单体转化率逐步上升;反应后期,悬垂双键聚合导致的分子之间的偶合更加明显,使得聚合物分子量快速上升,合成得到的都是无规支化聚合物.  相似文献   

12.
Hyperbranched vinyl polymers with high degrees of branching (DBs) up to 0.43 functionalized with numerous pendent allene groups have been successfully prepared via reversible addition fragmentation chain transfer polymerization of a state‐of‐art allene‐derived asymmetrical divinyl monomer, allenemethyl methacrylate (AMMA). The gelation did not occur until high monomer conversions (above 90%), as a result of the optimized reactivity difference between the two vinyl groups in AMMA. The branched structure was confirmed by a combination of a triple‐detection size exclusion chromatography (light scattering, refractive index, and viscosity detectors) and detailed 1H NMR analyses. A two‐step mechanism is proposed for the evolution of branching according to the dependence of molecular weight and DB on monomer conversion. Controlled radical polymerization proceeds until moderate conversions, mainly producing linear polymers. Subsequent initiation and propagation on the polymerizable allene side chains as well as the coupling of macromolecular chains generate numerous branches at moderate‐to‐high monomer conversions, dramatically increasing the molecular weight of the polymer. AMMA was also explored as a new branching agent to construct poly(methyl methacrylate)‐type hyperbranched polymers by its copolymerization with methyl methacrylate. The DB can be effectively tuned by the amount of AMMA, showing a linear increase trend. The pendent allene groups in the side chains of the copolymers were further functionalized by epoxidation and thiol‐ene chemistry in satisfactory yields. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2959–2969  相似文献   

13.
The recently developed methods of characterizing branching in polymers from gelpermeation chromatography and intrinsic viscosity data are verified experimentally. An iterative computer program was written to calculate the degree of branching in whole polymers. Long-chain branching in several low-density polyethylene samples was determined by both the fraction and whole polymer methods. The two methods gave consistent ranking of the branching in the samples although absolute branching indices differed. Effects of various experimental errors and the particular model used for branching were investigated. For polyethylene, the data show that the effect of branching on intrinsic viscosity is best described by the relation 〈g3W1/2 = [η]br/[η]1 where 〈g3w is the weight-average ratio of mean-square molecular radii of gyration of linear and trifunctionally branched polymers of the same weight-average molecular weight.  相似文献   

14.
Highly branched polyphenylenes, polyphenylene ethers, aromatic polyesters and polyamides synthesized from AB2 type monomers are reviewed. Polyphenylenes were obtained by aryl-aryl coupling reactions of 3,5-dihalo-phenyl organometallic reagents. 13C NMR indicates about 70% branching efficiency. A Tgat 236°C was observed, but the polymer did not form films. Polyethers were prepared by oxidative coupling of 2,4,6-tribromophenol and 2,4-dibromophenol. The former monomer gave high molecular weight polymers but the latter monomer did not polymerize well. Condensation of 3,5-diaminobenzoic acid (I) and 3-aminoisophthalic acid derivatives in an amide solvent gave lyotropic hyperbranched aromatic polyamides. The GPC indicated a large degree of polymer aggregation in the amide solvent in the absence of a complexing salt.  相似文献   

15.
Ambient temperature-initiated anionic polymerization has generated branched polystyrenes of varying molecular weights and architectures by inclusion of a distyryl branching comonomer into a conventional sec-Butylithium-initiated polymerization of styrene. Primary chain length control within the branched polymers, and restriction of the branching points to varying segments of the primary chains, led to variations of glass transition temperature with no direct correlation to the branched polymer molecular weight but a strong relationship to the length of individual chains comprising the branched macromolecules.  相似文献   

16.
Dielectric loss measurements are reported for polystyrene, crosslinked polystyrene, polyacrylamide, branched polyacrylamide, and poly(methyl methacrylate) at 1 and 10 kHz f over the temperature range ?85 to +100°C. Crosslinking and branching have a pronounced effect on the dielectric relaxation spectra of polymers. The methods of preparation of these polymers and their viscosity molecular weight data are also reported.  相似文献   

17.
The synthesis of arborescent polymers with poly(γ‐benzyl L‐glutamate) (PBG) side chains was achieved through successive grafting reactions. The linear PBG building blocks were produced by the ring‐opening polymerization of γ‐benzyl L‐glutamic acid N‐carboxyanhydride initiated with n‐hexylamine. The polymerization conditions were optimized to minimize the loss of amino chain termini in the reaction. Acidolysis of a fraction of the benzyl groups on a linear PBG substrate and coupling with linear PBG using a carbodiimide/hydroxybenzotriazole promoter system yielded a comb‐branched or generation zero (G0) arborescent PBG. Further partial deprotection and grafting cycles led to arborescent PBG of generations G1 to G3. The solvent used in the coupling reaction had a dramatic influence on the yield of graft polymers of generations G1 and above, dimethylsulfoxide being preferable to N,N‐dimethylformamide. This grafting onto scheme yielded well‐defined (Mw/Mn ≤ 1.06), high molecular weight arborescent PBG in a few reaction cycles, with number‐average molecular weights and branching functionalities reaching over 106 and 290, respectively, for the G3 polymer. α‐Helix to coiled conformation transitions were observed from N,N‐dimethylformamide to dimethyl sulfoxide solutions, even for the highly branched polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5270–5279  相似文献   

18.
The cationic ring‐opening polymerization of 3,3‐bis(hydroxymethyl)oxetane (BHMO) and the copolymerization of BHMO with 3‐ethyl‐3‐(hydroxymethyl)oxetane (EOX) were studied. Medium molecular weight polymers (number‐average molecular weight ≈ 2 × 103) were obtained in bulk polymerization. Poly[3,3‐bis(hydroxymethyl)oxetane], as highly insoluble, was only characterized by gel permeation chromatography and NMR methods in the esterified form. Copolymers of BHMO and EOX that were slightly soluble in organic solvents were characterized in more detail. In a copolymerization from a 1:1 mixture, the comonomers were consumed at equal rates. Matrix‐assisted laser desorption/ionization time‐of‐flight analysis confirmed that a random 1:1 copolymer was formed. 13C NMR analysis indicated that in contrast to previously described homopolymers of EOX in which the degree of branching was limited, the homopolymers of BHMO were highly branched. This pattern was preserved in the copolymers; EOX units were predominantly linear, whereas BHMO units were predominantly branched. The copolymerization of BHMO with EOX provides, therefore, a route to multihydroxyl branched‐polyethers with various degrees of branching containing ? OH groups exclusively as ≡C? CH2? OH units. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1991–2002, 2002  相似文献   

19.
Fatigue lifetimes, under a given alternating stress amplitude, have been determined for a series of linear and branched polystyrenes. The branched polymers were obtained by a crosslinking reaction using γ-irradiation from a Co60 source. By control of irradiation time, a series of branched samples of progressively increasing weight average molecular weight (Mw), with little change in number average molecular weight (Mn, were obtained. From comparison of fatigue data for these irradiated and branched samples with fatigue data obtained on a series of linear polystyrenes of increasing molecular weight, it may by concluded that appreciable increases in fatigue endurance can be achieved by increase in Mn and reduction in chain end density. For the irradiated samples, whether irradiated in air or in vacuum, fatigue lifetimes were comparable to or less than lifetimes to fracture for the unirradiated polymer, even though significant increases in Mw had occurred. It is suggested that the improved fatigue performance with increase of Mn is a consequence of increased craze stability resulting from the greater degree of chain entanglement and the smaller proportion of chain end defects.  相似文献   

20.
Star‐shaped and comb‐like poly(L‐Lactide)s (PLA) are produced by employing multifunctional initiators, and hyperbranched structure is prepared using a cyclic co‐monomer with hydroxyl group. FTIR, size exclusion chromatography, and H‐NMR techniques are employed to characterize the synthesized polymers, validating the formation of desired structures with chain lengths above the critical length for entanglement. After characterization of the synthesized polymers, the effect of branching on PLA properties is investigated by comparing the crystallization and rheological behavior of branched PLAs to those of a linear commercial grade. Differential scanning calorimetry and optical microscopy observations reveal a remarkable improvement in PLA crystallization due to the nucleation role of branching points. Moreover, synthesized polylactides exhibit strain hardening behavior during elongational viscosity measurements by a sentmanat extension rheometer platform. Significant improvements in crystallization and elongational rheology behavior of the synthesized polymers support the achievement of branched polymer structures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 522–531  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号