首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica xerogels were prepared by thermal drying wet gels in an electric oven (70 degrees C) after certain duration of ambient drying, and the relevant effect is investigated on the mesopore structures and surface fractal dimensions of the resultant xerogels. The silica gels were derived from a hydrochloric acid-catalyzed TEOS (tetraethylorthaosilicate) system, and both magnetic stirring and ultrasonic vibration were adopted during sol preparation. The percentage mesoporosity and surface fractal dimensions are evaluated using image analysis methods, based on FE-SEM (field emission gun-scanning electron microscopy) images. The results show that the mesoporosity of the resultant xerogels decreases with the duration of ambient drying for samples prepared using magnetic stirring and low-intensity ultrasonic vibration, while samples subjected to high-intensity ultrasound show a somewhat reverse trend. Samples prepared with magnetic stirring have almost constant surface fractal dimensions (nearly 3), irrespective of the ambient drying before thermal drying. The surface fractal dimensions of samples prepared using ultrasound increase with the duration of ambient drying.  相似文献   

2.
Mesoporous TiO2 thin films were synthesized by sol-gel processing using an aqueous-based, inexpensive, and environmentally friendly precursor and cationic surfactants as templates under mild reaction conditions. The films were prepared by spin-coating on glass substrates followed by calcination to remove the surfactant. N2 sorption, X-ray diffraction, and transmission electron microscopy were used to characterize the porosity, pore size, and pore structure before and after calcination. Films were found to have wormlike pore structures after calcination and surface areas on the order of 200 m2/g. These results show that the mesostructure and porosity of the thin films can be controlled by the surfactant template chemistry such as surfactant/Ti ratio, pH, and rate of solvent evaporation.  相似文献   

3.
The mesostructure of amorphous hydrous zirconia xerogels and the products of their heat treatment was studied for the first time using powder X-ray diffraction and small-angle neutron scattering (SANS). The samples prepared at low and high pH values have fundamentally different phase compositions and structures. The high-temperature annealing of hy drous zirconia xerogels is useful for manufacturing materials with controlled surface fractal dimensions.  相似文献   

4.
The preparation of highly porous CoFe2O4-SiO2 nanocomposite aerogels was successfully achieved by a novel sol-gel procedure involving urea-assisted co-gelation of the precursor phases. This method allows fast gelation, giving rise to an aerogel with 97% porosity. The formation of CoFe2O4 nanocrystals homogeneously distributed within the matrix occurs after calcination at 750 degrees C and is complete at 900 degrees C. Despite the high temperature required for the formation of the CoFe2O4 nanocrystals, the high porosity typical of aerogels is still retained.  相似文献   

5.
The gelation of a model rennet casein system was studied during cooling at different rates. During cooling, casein network structure development was proposed to evolve over a few steps at different length scales: molecules, particles, flocs, or network. Rennet casein flocs are fractal in nature, and fractal dimension and floc size are two variables affecting the rheology and microstructure of a rennet casein gel. Casein structure formation during cooling from 80 to 5 degrees C at four different rates (0.5, 0.1, 0.05, and 0.025 degrees C/min) was monitored by dynamic rheological tests, and a stronger gel developed at a slower cooling rate. During different cooling schedules, similar fractal dimensions were observed due to a lack of difference in the colloidal interactions. Differences among rheological data were possibly caused by variability in floc size, as observed in the second part of this paper. A larger number of smaller-sized flocs enabled gelation at a higher temperature and created a stronger network at a slower cooling rate. Controlling cooling schemes thus provides an approach for manipulating casein gelation and the microstructure for a system of fixed chemical compositions.  相似文献   

6.
A novel class of toluene based bis urea compounds carrying linear fatty acid units and semicarbazide linkages has been synthesised. The compounds were exhibiting thermoreversible gelation at concentrations below 10 mg/mL in common organic solvents, both aliphatic and aromatic. The effect of the chain length variation of fatty acid units on gelation properties like gelation concentration, gelation time and gel melting temperatures were studied. Choosing a particular gelator of fixed chain length and a specific solvent, the effect of the concentration on the gelation properties were studied. The thermal studies using DSC revealed the presence of phase transitions corresponding to the premelting and melting of the gels during the heating cycle. The morphology of the xerogels studied using SEM revealed a three dimensional network structure while the WAXS studies showed no crystallinity in the xerogels. IR spectra of the gels (solvent subtracted) and solutions in the corresponding solvent showed that a high degree of inter-molecular H bonding exists and absorptions corresponding to NH stretching shifted to lower wave numbers. Thus simple bisurea type of compounds exhibiting gelation ability in a wide range of solvents can be used for making functional gels for various applications.  相似文献   

7.
We have investigated the effect of solvent in the sol–gel process of tetraethylorthosilicate (TEOS) when di-n-butyltin dilaurate (DBTL) is used as polycondensation catalyst. Two sets of materials similar to those employed in the field of stone consolidation were prepared in the laboratory by using either protic or aprotic solvents: (1) xerogels from TEOS/DBTL, and (2) composites from TEOS/colloidal silica particles/DBTL. The results have shown that the solvent directly influences the aggregation pathway of the condensates. For a mixture of methyl ethyl ketone/acetone (aprotic solvents), gels with a higher degree of condensation were obtained. In the case of TEOS xerogels, the materials are essentially non-porous. Additionally, the incorporation of colloidal silica particles induces an important increase in porosity, which is even more dramatic when ethanol is used as solvent, through the formation of micro and mesoporous materials as the concentration of particles is increased. A TEOS polymerization pathway is suggested depending on which system of solvents is used. Various analytical techniques were used to characterize the materials obtained.  相似文献   

8.
Amorphous polymers were dissolved in chlorinated organic solvents and deposited on thin horizontal substrates. The solutions with various concentrations of polymers were deposited and evaporated under ambient conditions in a slow air current. Self-assembled oriented mesoscopically scaled patterns were observed. The patterns were studied with optical and atomic force microscopy. The concentration of the solution exerts a decisive influence on the mesoscopic cell characteristic dimension. Cell dimensions grow linearly with the polymer solution concentration for all kinds of tested polymers, chlorinated solvents and substrates. The dependence could be explained by a physical mechanism, based on the mass transport instability occurring under the intensive evaporation of the solvent. In situ FTIR study of the process was performed first. It was established with FTIR spectroscopy that film porosity is not due to water droplet condensation under evaporation.  相似文献   

9.
By use of small angle and ultra small angle neutron scattering techniques it was established that amorphous xerogels of hydrous zirconia and hafnia possess fractal properties in a wide range of scales, and the fractal dimension of these materials can be intentionally modified by changing their precipitation pH. It was found that the changes in fractal dimension and specific surface area of hydrous zirconia and hafnia xerogels are governed by the changes in the adsorption of anions onto their surface. It was demonstrated that particle size and specific surface area of ZrO2 and HfO2 nanopowders prepared by thermal decomposition of hydrous zirconia and hafnia xerogels depends strongly on the mesostructure and synthesis conditions of these xerogels.  相似文献   

10.
Microstructure Evolution of Nonhydrolytic Alumina Gels   总被引:2,自引:0,他引:2  
Nonhydrolitic sol-gel processes of aluminum chloride and aluminum bromide with isopropyl ether and aluminum sec-butoxide were performed at various temperatures. Based on the Arrhenius type variation of the gelation time with temperature, activation energies for the gelation were found to be in the range 19–25 Kcal/mol range. The energies were found to be sensitive to the nature of the aluminum ligands and the chemical scheme. Due to the large activation energy, it is possible to stop the reaction at any time before gelation by cooling the sol to room temperature. Small angle X-ray scattering (SAXS) of sols from the AlClAlCl3/Pr O system shows unique development of a fractal like structure with nanometer scale order, demonstrated by discrete peaks in the SAXS data. A fractal dimension D = 1.64 was found. An aggregation scheme is proposed to explain this phenomenon. A fractal dimension of 2.4 without small scale ordering found for xerogels prepared from the AlCl3/ASB system reflects the effect of the different precursors on the microstructure of nonhydrolytic gels.  相似文献   

11.
The synthesis of hydrophilic and hydrophobic high surface area (up to 1087 m2/cc) silica xerogels at pHs below 2 is demonstrated in this work. High surface area xerogels exhibit extremely fine microstructural features and fast gelation times (less than one hour). Contrary to conventional generalization that xerogels synthesized at low pH are polymeric, it is demonstrated that particulate xerogels can also be synthesized at pHs below 2. These xerogels are synthesized by the addition of large amounts of NH4OH and have relatively lower surface areas. The particulate nature of these xerogels is indicated by their opacity and from their coarse microstructural features as observed by TEM.  相似文献   

12.
An original, halide-free non-hydrolytic sol–gel route to mesoporous anatase TiO2 with hierarchical porosity and high specific surface area is reported. This route is based on the reaction at 200 °C of titanium(IV) isopropoxide with acetic anhydride, in the absence of a catalyst or solvent. NMR spectroscopic studies indicate that this method provides an efficient, truly non-hydrolytic and aprotic route to TiO2. Formation of the oxide involves successive acetoxylation and condensation reactions, both with ester elimination. The resulting TiO2 materials were nanocrystalline, even before calcination. Small (about 10 nm) anatase nanocrystals spontaneously aggregated to form mesoporous micron-sized particles with high specific surface area (240 m2 g−1 before calcination). Evaluation of the lithium storage performances shows a high reversible specific capacity, particularly for the non-calcined sample with the highest specific surface area favouring pseudo-capacitive storage: 253 mAh g−1 at 0.1 C and 218 mAh g−1 at 1 C (C=336 mA g−1). This sample also shows good cyclability (92 % retention after 200 cycles at 336 mA g−1) with a high coulombic efficiency (99.8 %). Synthesis in the presence of a solvent (toluene or squalane) offers the possibility to tune the morphology and texture of the TiO2 nanomaterials.  相似文献   

13.
Synthesis of alumina aerogels was carried out by hydrolysis of aluminium isopropanolate and butanolate in benzene, methanol and isopropanol solutions as components of support precursors followed by gelation, drying under supercritical conditions and calcination. The influence of the type of precursor and solvent, synthesis temperature as well as drying and calcination temperature on bulk density, specific surface area and total pore volume was investigated.  相似文献   

14.
The internal surface structures of silica aerogel particles synthesized using different catalysts in emulsion and microemulsion media have been investigated by means of N(2) adsorption and desorption isotherms. Surface fractal dimensions have been computed using different methods: Frankel-Halsey-Hill plots of the adsorption isotherms, the thermodynamic fractal isotherm equation, and a modification of the thermodynamic fractal isotherm equation. Silica aerogels synthesized in emulsion media with an acidic catalyst have a high specific surface area without micropores and show two separate ranges of scales where the surface fractal dimensions are different and constant. Silica aerogels synthesized in emulsion media with a basic catalyst have a moderate specific surface area with a high percentage of micropores and show constant surface fractal dimensions over a larger range. Silica aerogels synthesized in microemulsion media with a basic catalyst have a low specific surface area with a moderate percentage of micropores and show a moderate range of scales over which the surface fractal dimension is constant. Analyses by both the thermodynamic and modified thermodynamic methods give similar ranges of the surface fractal dimensions of the silica particles. Copyright 2000 Academic Press.  相似文献   

15.
When cheese samples refrigerated at 4 degrees C in 120 mL plastic tubs were transferred to room temperature at 23 degrees C, moisture began to move from the warmer surface to the cooler interior; the difference after 1 h was 0.2-0.4%. Others had observed that moisture moved from the interior of warmer blocks of cheese to the cooler surface during cooling at the end of cheese manufacture. In loosely packed cheese prepared for analysis, part of the moisture movement may have been due to evaporation from the warmer surface and condensation on the cooler cheese. It is recommended that cheese be prepared for analysis immediately before weighing. Cheese samples that have been refrigerated, as in interlaboratory trials, should also be remixed or prepared again.  相似文献   

16.
This study deals with the use of ethanol as washing solvent in the preparation of the silica gels from sodium silicate in order to enhance the textural properties, especially surface area. We here examined the effect of ethanol-washing on surface area, micro- and mesopore volume, and average pore size. The silica xerogels prepared from sodium silicate solution exhibited an extremely high surface area of 1139 m2/g by washing their hydrogels with ethanol. Compared to water-washed xerogels, ethanol-washed xerogels showed higher surface areas, total pore volumes, and larger average pore sizes. Unlike the surface area of water-washed xerogel, that of the ethanol-washed xerogel was not affected by the silica concentration of initial solution. This study indicates that the textural properties of sodium silicate-derived xerogels are further enhanced by using ethanol as washing solvent.  相似文献   

17.
Microscale fish bowls, hollow particles with engineered holes in their surfaces, were prepared using two different methods. In the first method, commercial latex beads suspended in water were swollen with a good solvent of the polymer, followed by freezing with liquid nitrogen and evaporation of the solvent below 0 degrees C. While one big hole was generated when the amount of solvent used for the swelling was relatively low, small holes could be produced in the outer surface of each bowl by increasing the degree of swelling. The porosity and pore structure show a similar dependence on the degree of swelling for both amorphous and semicrystalline polymers even though they are supposed to exhibit different phase behaviors during the freezing and solvent evaporation processes. In the second method, a polymer emulsion in water was prepared and then frozen with liquid nitrogen, followed by solvent evaporation below 0 degrees C. The porosity and pore structure could be controlled by adjusting the concentration of the polymer solution used to prepare the emulsion. As for encapsulation, the bowl-shaped particles could be transformed back into solid beads via thermal annealing at a temperature near the glass transition temperature of the polymer or by adding a good solvent of the polymer to the colloidal suspension. In a proof-of-concept experiment, microscale fish bowls were fabricated from poly(caprolactone), quickly loaded with a fluorescent dye, and sealed through thermal annealing. The encapsulated dye could then be slowly released in a phosphate buffered saline, suggesting their potential use as a new class of microscale capsules for drug delivery.  相似文献   

18.
Series of nanocomposites with γ-Fe2O3 supported on SiO2-capsules were prepared by adsorption of hydrophobic iron acetylacetonate on the hydrophilic surface of SiO2-capsules in the evaporation process of the solvent and then calcination the complex at 450 °C. The adsorption and calcination conditions were studied and the resultant nanaoparticles were characterized by XRD, XRF and TEM in detail. The results indicated that γ-Fe2O3 loaded discontinuously but uniformly on the surface of SiO2-capsules at appropriate content. The specific surface area characterization and doxorubicin hydrochloride release shown although the surface area of the target composites decreased slightly, the nanoparticles still had large potential using as drug delivery and magnetic targeting system.  相似文献   

19.
Water washed manganese nodule leached residue (WMNLR) calcined at different temperatures was characterized by XRD, FTIR, TG-DTA, surface area, surface oxygen, and surface acid sites. Surface area, surface oxygen, surface hydroxyl group, and surface acid sites increase up to 400 degrees C and then decrease with further rise in calcination temperature up to 700 degrees C. The catalytic activity of the calcined samples was tested for single-step oxidation of benzene to phenol using hydrogen peroxide as the oxidant and acetic acid as the solvent at room temperature. The influence of various reaction parameters such as solvent, concentration of solvent, oxidant amount, time, temperature, and catalyst amount was studied to optimize the reaction conditions. WMNLR calcined at 400 degrees C showed the highest catalytic activity towards oxidation of benzene with 12.7% conversion and 98% selectivity.  相似文献   

20.
Herein we present the synthesis of anatase–silica aerogels based on the controlled gelation of preformed nanoparticle mixtures. The monolithic aerogels with macroscopic dimensions show large specific surface areas, and high and uniform porosities. The major advantage of such a particle-based approach is the great flexibility in pre-defining the compositional and structural features of the final aerogels before the gelation process by fine-tuning the properties of the titania and silica building blocks (e.g., size, composition and crystallinity) and their relative ratio in the dispersion. Specific surface functionalization enables control over the interaction between the nanoparticles and thus over their distribution in the aerogel. Positively charged titania nanoparticles are co-assembled with negatively charged Stoeber particles, resulting in a binary aerogel with a crystalline anatase and amorphous silica framework directly after supercritical drying without any calcination step. Titania–silica aerogels combine the photocatalytic activity of the anatase nanoparticles with the extensive silica chemistry available for silica surface functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号