首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this Letter, we analyze, using scanning tunneling spectroscopy, the density of electronic states in nearly optimally doped Bi2Sr2CaCu2O(8+delta) in zero magnetic field. Focusing on the superconducting gap, we find patches of what appear to be two different phases in a background of some average gap, one with a relatively small gap and sharp large coherence peaks and one characterized by a large gap with broad weak coherence peaks. We compare these spectra with calculations of the local density of states for a simple phenomenological model in which a 2xi0 x 2xi0 patch with an enhanced or suppressed d-wave gap amplitude is embedded in a region with a uniform average d-wave gap.  相似文献   

3.
We report on the c-axis resistivity rho(c)(H) in Bi(2)Sr(2)CaCu(2)O(8+delta) that peaks in quasistatic magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity sigma(c)(H), we find that the negative slope of rho(c)(H) above the peak is due to quasiparticle tunneling conductivity sigma(q)(H) across the CuO2 layers below H(c2). At high fields (a) sigma(q)(H) grows linearly with H, and (b) rho(c)(T) tends to saturate ( sigma(c) not equal0) as T-->0, consistent with the scattering at the nodes of the d-wave gap. A superlinear sigma(q)(H) marks the normal state above T(c).  相似文献   

4.
5.
Since the nature of pairing interactions is manifested in the superconducting gap symmetry, the exact gap structure, particularly any deviation from the simple d(x(2)-y(2)) symmetry, would help in elucidating the pairing mechanism in high- T(c) cuprates. Anisotropic heat transport measurement in Bi(2)Sr(2)CaCu(2)O(8+delta) reveals that the quasiparticle populations are different for the two nodal directions and thus the gap structure must be uniquely anisotropic, suggesting that pairing is governed by interactions with a rather complicated anisotropy. Intriguingly, it is found that the "plateau" in the magnetic-field dependence of the thermal conductivity is observed only in the b-axis transport.  相似文献   

6.
Time-resolved photoelectron spectroscopy is employed to study the dynamics of photoexcited electrons in optimally doped Bi{2}Sr{2}CaCu{2}O{8+delta} (Bi-2212). Hot electrons thermalize in less than 50 fs and dissipate their energy on two distinct time scales (110 fs and 2 ps). These are attributed to the generation and subsequent decay of nonequilibrium phonons, respectively. We conclude that 20% of the total lattice modes dominate the coupling strength and estimate the second momentum of the Eliashberg coupling function lambdaOmega{0}{2}=360+/-30 meV{2}. For the typical phonon energy of copper-oxygen bonds (Omega{0} approximately 40-70 meV), this results in an average electron-phonon coupling lambda<0.25.  相似文献   

7.
8.
Recent improvements in momentum resolution lead to qualitatively new angle-resolved photoemission spectroscopy results on the spectra of Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) along the (pi,pi) direction, where there is a node in the superconducting gap. We now see the intrinsic line shape, which indicates the presence of true quasiparticles at all Fermi momenta in the superconducting state, and lack thereof in the normal state. The region of momentum space probed here is relevant for charge transport, motivating a comparison of our results to conductivity measurements by infrared reflectivity.  相似文献   

9.
10.
We report the ultrafast optical response of quasiparticles (QPs) in both the pseudogap (PG) and superconducting (SC) states of an underdoped Bi2Sr2CaCu2O8 + y (Bi2212) single crystal measured with the time-resolved pump-probe technique. At a probe energy variant planck's over omegapr = 1.55 eV, it is found that the reflectivity change DeltaR/R changes its sign at exactly Tc, which allows the direct separation of the charge dynamics of PG and SC QPs. Further systematic investigations indicate that the transient signals associated with PG and SC QPs depend on the probe beam energy and polarization. By tuning them below Tc, two distinct components can be detected simultaneously, providing evidence for the coexistence of PG and SC QPs.  相似文献   

11.
While Josephson-junction-like structures intrinsic to the layered cuprate high temperature superconductors offer an attractive stage for exploiting possible applications to new quantum technologies, the low energy quasiparticle excitations characteristically present in these d-wave superconductors may easily destroy the coherence required. Here we demonstrate for the first time the feasibility of macroscopic quantum tunneling in the intrinsic Josephson junctions of a high temperature superconductor Bi(2)Sr(2)CaCu(2)O(8 + delta), and find it to be characterized by a high classic-to-quantum crossover temperature and a relatively weak quasiparticle dissipation.  相似文献   

12.
We have investigated macroscopic quantum tunneling in Bi(2)Sr(2)CaCu(2)O(8 + delta) intrinsic Josephson junctions at millikelvin temperatures using microwave irradiation. Measurements show that the escape rate for uniformly switching stacks of Nu junctions is about Nu(2) times higher than that of a single junction having the same plasma frequency. We argue that this gigantic enhancement of the macroscopic quantum tunneling rate in stacks is boosted by current fluctuations which occur in the series array of junctions loaded by the impedance of the environment.  相似文献   

13.
14.
We have measured the complex conductivity sigma of a Bi(2)Sr(2)CaCu(2)O(8+delta) thin film between 0.2 and 0.8 THz. We find sigma in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k(B)T/Planck's over 2pi for temperatures below T(c).  相似文献   

15.
16.
17.
A high temporal resolution magneto-optical system is employed to observe the time evolution of the vortex structure in Bi(2)Sr(2)CaCu(2)O(8+delta) crystals after a sudden application of a magnetic field. The magneto-optical images reveal dynamic coexistence of two vortex phases: a quasiordered phase in the sample interior and a transient disordered phase near the sample edges. The border between these two phases, marked by an abrupt change in the gradient of the local induction, moves with time. This motion enables tracing the decay of the transient state and the concurrent growth of the thermodynamic vortex phases. The growth rate is sensitive to the location in the field-temperature phase diagram.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号