首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A comparison was made of the effectiveness of popular disinfectants (Cavicide, Cidexplus, Clorox, Exspor, Lysol, Renalin, and Wavicide) under conditions prescribed for disinfection in the respective product labels on Pseudomonas aeruginosa either in suspension or deposited onto surfaces of metallic or polymeric plastic devices. The testing also included 7 nonformulated germicidal agents (glutaraldehyde, formaldehyde, peracetic acid, hydrogen peroxide, sodium hypochlorite, phenol, and cupric ascorbate) commonly used in disinfection and decontamination. Results showed that P. aeruginosa is on average 300-fold more resistant when present on contaminated surfaces than in suspension. This increase in resistance agrees with results reported in studies of biofilms, but unexpectedly, it precedes biofilm formation. The surface to which bacteria are attached can influence the effectiveness of disinfectants. Viable bacteria attached to devices may require dislodging through more than a one-step method for detection. The data, obtained with a sensitive and quantitative test, suggest that disinfectants are less effective on contaminated surfaces than generally acknowledged.  相似文献   

2.
We exploited the ability of photocatalytic titanium dioxide (TiO(2)) as an agent for the biofilm control. Two photocatalytic systems were investigated: a 3 g L(-1) suspension of TiO(2) nanopowder in demineralized water and glass slides coated with a TiO(2) thin film, achieved by sol-gel deposition. A running protocol for the photoactivation of TiO(2) was set up using the dye rhodamine B. The microorganisms studied were Pseudomonas stutzeri, Pseudomonas aeruginosa and a Bacillus cereus-group as planktonic cells. P. aeruginosa biofilms were also studied at both the solid-liquid and the solid-air interface. The TiO(2) nanopowder produced 1-log reduction of Bacillus sp. planktonic cells in 24 h, 2-log reduction of P. stutzeri planktonic cells in 30 min and 1-log reduction of P. aeruginosa planktonic cells in 2 h compared with non-photo-activated TiO(2). TiO(2) thin film produced almost a complete eradication of P. aeruginosa planktonic cells (initial concentration 10(8) cells mL(-1)) in 24 h compared to a 3-log reduction caused by UV-A light alone. In contrast, neither the photocatalytic treatment with TiO(2) film nor that with TiO(2) nanopowder had any effect on P. aeruginosa biofilms at all the interfaces investigated. Possible explanations for these findings, and for the discrepancy between this work and literature data, are discussed.  相似文献   

3.
Biofilm growth of Bacillus subtilis, Pseudomonas fragi, Pediococcus inopinatus and Listeria monocytogenes was studied on stainless steel surfaces at room and low temperatures to evaluate the results of traditional hygiene measures. The results were compared with those of image analysis of stainless steel surfaces in an epifluorescence microscope. Statistical analyses were carried out to determine the variations between the conventional cultivation swab method, the glycocalyx amount obtained using swabbing, and the values of the areas of the biofilm, slime and cells. As a general rule, old biofilms showed total counts at approximately the same levels as the young biofilm. The results showed that temperature affected the results for all strains except B. subtilis. The strains of Pe. inopinatus and Ps. fragi showed increased attachment at 6°C and L. monocytogenes at 25°C. The biofilm slime was more easily detached than the cells. The results indicated that the traditional swab method is not reliable for the measurement of biofilm formation on surfaces.  相似文献   

4.
5.
The binding of metal ions to Pseudomonas aeruginosa PAO1 cells attached to a ZnSe surface has been observed in this research through cation exchange experiments using ATR-IR spectroscopy. A biofilm consisting of a single layer of Pseudomonas aeruginosa PAO1 cells was formed on a ZnSe prism by flowing a bacterial suspension in a 0.03 mol L(-)(1) NaNO(3) solution at pH 5.0 across its surface. Exposure of the biofilm to chromium(III) nitrate solution resulted in increases in all band absorbances. This absorbance increase has been attributed to the binding of chromium(III) to the bacterial exopolymers associated with the prism surface. The chromium(III) binding causes the exopolymers to contract and move the bacterial cell closer to the ZnSe surface. Further study of chromium(III) ion exchange using a mutant P. aeruginosa with a truncated lipopolysaccharide (LPS) chain resulted in much smaller absorbance changes. This observation supports the view that the extension of bacterial exopolymers and hence the distance of the bacterial cell from the surface is strongly influenced by environmental factors such as the presence of metal cations. Following chromium(III) cation exchange, the bacterial band absorbances remained constant even when the bacteria were washed with a 0.03 mol L(-)(1) NaNO(3) solution, indicating that the chromium(III) was irreversibly bound. Ion exchange with nickel(II) and cobalt(II) nitrate solutions within identical biofilms showed that these cations caused relatively small increases in absorbances that were reversible, indicating that nickel(II) and cobalt(II) are less strongly bound than chromium(III) within P. aeruginosa biofilms. The absence of discernible IR spectral changes with metal binding appears to indicate a predominantly electrostatic mechanism for binding of Cr(III), Ni(II), and Co(II) ions by bacteria in the early stages of biofilm formation.  相似文献   

6.
The bactericidal and fungicidal effects of five disinfectants and one combination of two disinfectants were tested using a modified Kelsey-Sykes method in which living microorganisms suspended in a sterilized yeast suspension («dirtyå conditions) and in sterile distilled water («cleanå conditions) were added to the disinfectants in three stages. Six bacteria and two fungal organisms were employed as test microbes.Results showed that formaldehyde was virtually inactive at the dilution tested (1/50), whereas phenol and the combination propylene-phenoxetol +benzalkonium chloride were moderately effective, the latter compound being better. Glutaraldehyde was manifestly the most effective of the disinfectants tested, followed by tricresol. At a 1/50 dilution, chloramine proved to have a surprisingly strong fungicidal effect on Candida albicans and Aspergillus fumigatus under «dirtyå conditions, whereas the same fungal organisms proved rather resistant to chloramine under «cleanå conditions. The same was demonstrated–though less markedly—when higher dilutions o chrloramine were used. The search for an explanation is still in progress. At relatively high dilutions, chloramine also proved effective against most of the test bacteria, especially under «cleanå conditions. It is recommended that the yeast suspension of chloramine against fungal strains under «dirtyå conditions.  相似文献   

7.
Implantable medical devices (IMDs) are susceptible to microbial adhesion and biofilm formation, which lead to several clinical complications, including the occurrence of implant-associated infections. Polylactic acid (PLA) and its composites are currently used for the construction of IMDs. In addition, chitosan (CS) is a natural polymer that has been widely used in the medical field due to its antimicrobial and antibiofilm properties, which can be dependent on molecular weight (Mw). The present study aims to evaluate the performance of CS-based surfaces of different Mw to inhibit bacterial biofilm formation. For this purpose, CS-based surfaces were produced by dip-coating and the presence of CS and its derivatives onto PLA films, as well surface homogeneity were confirmed by contact angle measurements, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antimicrobial activity of the functionalized surfaces was evaluated against single- and dual-species biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan-based surfaces were able to inhibit the development of single- and dual-species biofilms by reducing the number of total, viable, culturable, and viable but nonculturable cells up to 79%, 90%, 81%, and 96%, respectively, being their activity dependent on chitosan Mw. The effect of CS-based surfaces on the inhibition of biofilm formation was corroborated by biofilm structure analysis using confocal laser scanning microscopy (CLSM), which revealed a decrease in the biovolume and thickness of the biofilm formed on CS-based surfaces compared to PLA. Overall, these results support the potential of low Mw CS for coating polymeric devices such as IMDs where the two bacteria tested are common colonizers and reduce their biofilm formation.  相似文献   

8.
Microbial biofilm architecture contains numerous protective features, including extracellular polymeric material that render biofilms impermeable to conventional antimicrobial agents. This study evaluated the efficacy of antimicrobial photodynamic inactivation (aPDI) of Enterococcus faecalis biofilms. The ability of a cationic, phenothiazinium photosensitizer, methylene blue (MB) and an anionic, xanthene photosensitizer, rose bengal (RB) to inactivate biofilms of E. faecalis (OG1RF and FA 2-2) and disrupt the biofilm structure was evaluated. Bacterial cells were tested as planktonic suspensions, intact biofilms and biofilm-derived suspensions obtained by the mechanical disruption of biofilms. The role of a specific microbial efflux pump inhibitor (EPI), verapamil hydrochloride in the MB-mediated aPDI of E. faecalis biofilms was also investigated. The results showed that E. faecalis biofilms exhibited significantly higher resistance to aPDI when compared with E. faecalis in suspension (P < 0.001). aPDI with cationic MB produced superior inactivation of E. faecalis strains in a biofilm along with significant destruction of biofilm structure when compared with anionic RB (P < 0.05). The ability to inactivate biofilm bacteria was further enhanced when the EPI was used with MB (P < 0.001). These experiments demonstrated the advantage of a cationic phenothiazinium photosensitizer combined with an EPI to inactivate biofilm bacteria and disrupt biofilm structure.  相似文献   

9.
Clostridium difficile is a strict anaerobic spore-forming bacterium, and an increasingly common nosocomial pathogen. The U.S. Environmental Protection Agency (EPA) is responsible for the registration of disinfectants, including products designed to treat environmental surfaces contaminated with spores of C. difficile. Product efficacy data are required for registration; however, there is a lack of methodology for generating high-quality spore suspensions for evaluating product performance. As such, a study was carried out to select a suitable C. difficile strain and to develop a stand-alone method to prepare a spore suspension that meets specific criteria necessary for quantitative testing of disinfectants. The criteria are: (1) a spore titer of > 8 log10/mL, (2) > or = 90% spores to vegetative cells, and (3) resistance of spores (determined by viability) to 2.5 M hydrochloric acid (HCl). Several strains of C. difficile (toxigenic and nontoxigenic) were grown on various media (solid and liquid) for varying lengths of time to determine the best combination of incubation conditions and media to optimize spore production and quality. Once the spore production procedure was optimized, a toxigenic strain of C. difficile [American Type Culture Collection (ATCC) 43598] was selected for use in trials to verify repeatability from one production run to the next. The spore suspension was initiated by spreading vegetative cells of C. difficile (ATCC 43598) on CDC anaerobic 5% sheep blood agar plates and incubating for 7-10 days at 36 +/- 1 degrees C under anaerobic conditions. Spores were harvested when > or = 90% of the cells converted to spores as determined by observation using phase-contrast microscopy. The spores were washed three times with saline-Tween-80, resuspended in cold deionized water, heated to 70 degrees C for 10 min, evaluated microscopically for quality, and enumerated on cycloserine-cefoxitin-fructose agar containing horse blood and taurocholate. The spore suspension was used to inoculate brushed stainless steel carriers (1 cm in diameter) with and without a soil load in accordance with the Standard Quantitative Carrier Disk Test Method (ASTM E-2197-02) to determine carrier load. Once it was determined that > 6 log10 spores/carrier could be recovered, spores were evaluated for resistance to HCI. The sporulation method presented in this report is simple and repeatable and results in spore suspension of high titer (> 8 log10/mL) and quality (> or = 90% spores to vegetative cells) that met acid resistance criteria (spores were resistant to 2.5 M HCI for 10 min). In addition, recovery from brushed stainless steel carriers with and without soil load was > 6 log10 spores/carrier. A 6 log10 performance standard was set forth in the EPA's interim guidance for generating data to support a label claim for effectiveness against C. difficile spores on hard, nonporous surfaces. This precollaborative investigation successfully demonstrated the use of a methodology for in vitro production of C. difficile spores (ATCC 43598) necessary for conducting efficacy tests. A proposal will be submitted to the AOAC INTERNATIONAL Methods Committee on Antimicrobial Efficacy Testing for a collaborative study; see Appendix.  相似文献   

10.
本文研究厌氧条件下产电绿脓杆菌P. aeruginosa BTE-1的电化学催化特征。研究结果表明,P. aeruginosa BTE-1菌株在厌氧条件下,不能分泌可充当电子介体的绿脓菌素,但可通过在电极表面形成生物膜呈现了直接电催化性能。P. aeruginosa BTE-1在电极表面形成生物膜与其在特定电极电位下向电极传递电子的过程直接相关,适宜的电位为+0.2 V (vs. SCE),电位过高可能会损害P. aeruginosa BTE-1细胞。室温范围内升高温度可增强P. aeruginosa BTE-1生物膜电催化活性,但过高的温度(>60℃)会抑制生物膜电催化活性。循环伏安曲线显示,在厌氧条件下形成的P. aeruginosa BTE-1生物膜,具有与典型产电菌株G. sulfurreducens相近的氧化还原电位(-0.4 V~ -0.2 V vs. SCE)。P. aeruginosa BTE-1生物膜可电催化酵母抽取物和葡萄糖,但不能电催化醋酸盐。  相似文献   

11.
For well over a decade, many deficiencies have been identified in current AOAC methods used to assess the microbicidal activities of chemical disinfectants on medical devices and environmental surfaces. This report discusses the development of quantitative carrier tests (QCT) designed to address these concerns. Decontamination of surfaces with dried inocula is invariably more difficult than when microorganisms are in suspension. For medical device as well as environmental decontamination, microbicides are used on contaminated surfaces, thus making it necessary to evaluate their microbicidal action on representative carrier materials contaminated with a dried challenge microorganism(s). Our approach is a 2-tiered QCT. The first tier (QCT-1) uses relatively ideal conditions to assess performance of the microbicide for screening purposes; the test uses smooth glass surfaces and quantities of disinfectant in excess of those likely to be experienced in the field. The second tier of testing (QCT-2) is more stringent because it uses (1) disks of brushed stainless steel as carriers, (2) only 50 microL of the test formulation on each carrier as compared to 1 mL in QCT-1, and (3) an added soil load to simulate the presence of residual body fluids or accumulated surface dirt. This review also discusses the factors that affect disinfection of medical devices and environmental surfaces in the context of the methodology used to evaluate the potency of microbicides. Specific recommendations for discussion are included, and performance criteria are suggested based on a risk-reduction approach for different classes of disinfectants. The focus is on improving the relevance of the test methodology to actual field use of disinfectants for devices and facilities in health care, and potentially in other settings. It is hoped that this review and its recommendations will initiate needed discussion and resolution of the many issues identified.  相似文献   

12.
High-touch environmental surfaces are important in the spread of many nosocomial pathogens. Although such surfaces are routinely disinfected, the testing and label claims of many common disinfectants do not reflect the realities of field use. A study was conducted to determine the influence of several crucial factors on the action of disinfectants in general, and to assess the killing efficiency of selected chemistries against Staphylococcus aureus and Pseudomonas aeruginosa, related to their drying times (i.e., after one application) and label-specified contact times using a quantitative carrier test. The products were also tested for their ability to wet a hydrophobic (epoxy resin) surface. The hard-surface disinfectants (in-use concentration in ppm) tested were: (a) chlorine bleach (500); (b) quaternary ammonium compounds (quat; 600) alone; (c) quat (3000) with 17% isopropanol (v/v); (d) quat (3000) with 60% ethanol (v/v); (e) phenolic (800) alone; (f) quat (2000), phenolic (3000) with 70% ethanol (v/v); and (g) accelerated hydrogen peroxide (AHP; 5000 of H2O2). The arbitrarily set criterion of bactericidal activity was > or = 6 log10 reduction in the viability of both species tested. All surfaces tested with all products dried in < 5 min, with alcohol-based surfaces drying significantly faster. Even though the alcohol-free quat and phenolic claim a contact time of 10 min, they dried in < 4 min after a single application and failed to meet the performance criterion. Bleach (500 ppm) dried in about 3 min and was effective. AHP also dried in about 3 min and met its label claim even at 1 min of contact. Quat (3000) with 17% isopropanol dried at 1 min and was effective. Quat (3000) with 60% ethanol and quat (2000), phenolic (3000) with 70% ethanol dried in < 1 min, and were ineffective. AHP, alcohol-containing quats, and quat-phenolic-alcohol gave acceptable wettability, while quat and phenolic alone, as well as bleach, covered the treated surface unevenly. The findings show that label claims, especially those for contact times, fail to reflect the way many hard-surface disinfectants are used in the field.  相似文献   

13.
The rheology of bacterial biofilms at the micron scale is an important step to understanding the communal lifecycles of bacteria that adhere to solid surfaces, as it measures how they mutually adhere and desorb. Improvements in particle-tracking software and imaging hardware have allowed us to successfully employ particle-tracking microrheology to measuring single-species bacterial biofilms, based on Staphlococcus aureus and Pseudomonas aeruginosa. By tracking displacements of the cells at a range of timescales, we separate active and thermal contributions to the cell motion. The S. aureus biofilms in particular show power-law rheology, in common with other dense colloidal suspensions. By calculating the mean compliance of S. aureus biofilms, we observe them becoming less compliant during growth, and more compliant during starvation. The biofilms are rheologically inhomogeneous on the micron scale, as a result of the strength of initial adhesion to the flow cell surface, the arrangement of individual bacteria, and larger-scale structures such as flocs of P. aeruginosa. Our S. aureus biofilms became homogeneous as a function of height as they matured: the rheological environment experienced by a bacterium became independent of how far it lived from the flow cell surface. Particle-tracking microrheology provides a quantitative measure of the "strength" of a biofilm. It may therefore prove useful in identifying drug targets and characterizing the effect of specific molecular changes on the micron-scale rheology of biofilms.  相似文献   

14.
While biofilms are ubiquitous in nature, the mechanism by which they form is still poorly understood. This study investigated the process by which bacteria deposit and, shortly after, attach irreversibly to surfaces by reorienting to create a stronger interaction, which leads to biofilm formation. A model for attachment of Pseudomonas aeruginosa was developed using a quartz crystal microbalance with dissipation monitoring (QCM-D) technology, along with a fluorescent microscope and camera to monitor kinetics of adherence of the cells over time. In this model, the interaction differs depending on the force that dominates between the viscous, inertial, and elastic loads. P. aeruginosa, grown to the midexponential growth phase (hydrophilic) and stationary phase (hydrophobic) and two different surfaces, silica (SiO(2)) and polyvinylidene fluoride (PVDF), which are hydrophilic and hydrophobic, respectively, were used to test the model. The bacteria deposited on both of the sensor surfaces, though on the silica surface the cells reached a steady state where there was no net increase in deposition of bacteria, while the quantity of cells depositing on the PVDF surface continued to increase until the end of the experiments. The change in frequency and dissipation per cell were both positive for each overtone (n), except when the cells and surface are both hydrophilic. In the model three factors, specifically, viscous, inertial, and elastic loads, contribute to the change in frequency and dissipation at each overtone when a cell deposits on a sensor. On the basis of the model, hydrophobic cells were shown to form an elastic connection to either surface, with an increase of elasticity at higher overtones. At lower overtones, hydrophilic cells depositing on the hydrophobic surface were shown to also be elastic, but as the overtone increases the connection between the cells and sensor becomes more viscoelastic. In the case of hydrophilic cells interacting with the hydrophilic surface, the connection is viscous at each overtone measured. It could be inferred that the transformation of the viscoelasticity of the cell-surface connection is due to changes in the orientation of the cells to the surface, which allow the bacteria to attach irreversibly and begin biofilm formation.  相似文献   

15.
We have investigated the interactions of UVI with two bacterial phosphate-containing species: Gram-positive Bacillus sphaericus and Gram-negative Pseudomonas aeruginosa. The Gram-positive B. sphaericus was investigated by using Raman spectroscopy and time-resolved laser-induced fluorescence spectroscopy (TRLFS). We found that living cells, spores, and intact heat-killed cells complexed UVI (pH 4.5) through phosphate groups bound to their surfaces, while decomposed cells released H2PO4- and precipitated UVI as UO2(H2PO4)2. TRLFS of UVI showed that Gram-negative P. aeruginosa--genetically engineered to accumulate polyphosphate, subsequently degrade it, and secrete phosphate--precipitated UVI quantitatively at pH 4.5. The same bacterial strain, not induced to secrete phosphate, sorbed only a small amount of UVI.  相似文献   

16.
Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.  相似文献   

17.
A new strategy aiming at the protection of metallic surfaces against the growth of biofilms is presented here. This work reports the grafting of primary amines by aminosilanization of oxidized stainless steel followed by chemical coupling of the glycosidase lysozyme from hen egg white using glutaraldehyde as homobifunctional cross-linking agent. Controlled characterization of a stainless steel surface by X-ray photoelectron spectroscopy and Fourier transform infrared reflection-absorption spectroscopy at each step enabled the mode of binding, coverage, and orientation of the grafted molecules to be addressed. As a result, the stainless steel samples covered with a covalently immobilized layer of lysozyme showed some lytic activity on a suspension of bacteria Micrococcus lysodeikticus.  相似文献   

18.
研究了恶臭假单胞菌在蒙脱石、高岭石和针铁矿表面的吸附特征,探讨了细菌在不同粘粒矿物存在下的生长代谢活性,及对甲基对硫磷的降解动力学.结果表明, 三种矿物对细菌的吸附强度为针铁矿>高岭石>蒙脱石.当甲基对硫磷浓度较低时(10 mg/L), 游离菌的降解能力始终比固定菌强;在高浓度(20~40 mg/L)下, 固定菌对农药的降解能力起初(前9 h)高于游离菌, 随后渐渐低于游离菌.不同矿物固定的细菌, 其降解能力为蒙脱石>高岭石>针铁矿.蒙脱石对细菌的亲和力最弱, 但它对细菌的代谢活性有促进作用, 有利于农药的生物降解; 而针铁矿与细菌的结合强度最大, 细菌活性受到抑制, 不利于农药的降解.  相似文献   

19.
The adhesion of microbial cells to metal surfaces in aqueous media is an important phenomenon in both the natural environment and engineering systems. The adhesion of two anaerobic sulfate-reducing bacteria (Desulfovibrio desulfuricans and a local marine isolate) and an aerobe (Pseudomonas sp.) to four polished metal surfaces (i.e., stainless steel 316, mild steel, aluminum, and copper) was examined using a force spectroscopy technique with an atomic force microscope (AFM). Using a modified bacterial tip, the attraction and repulsion forces (in the nano-Newton range) between the bacterial cell and the metal surface in aqueous media were quantified. Results show that the bacterial adhesion force to aluminum is the highest among the metals investigated, whereas the one to copper is the lowest. The bacterial adhesion forces to metals are influenced by both the electrostatic force and metal surface hydrophobicity. It is also found that the physiological properties of the bacterium, namely the bacterial surface charges and hydrophobicity, also have influence on the bacteria-metal interaction. The adhesion to the metals by Pseudomonas sp. and D. desulfuricans was greater than by the marine SRB isolate. The cell-cell interactions show that there are strong electrostatic repulsion forces between bacterial cells. Cell probe atomic force microscopy has provided some useful insight into the interactions of bacterial cells with the metal surfaces.  相似文献   

20.
Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号