首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
The composition of Ti-based thin films deposited on silicon using a self-ion assisted deposition (SIAD) method was investigated by utilising the Rutherford backscattering spectrometry technique and RUMP simulation code. The hydrogen affinity of the coatings produced by means of SIAD was investigated using the 1H(15N, αγ)12C nuclear resonance reaction. The titanium–based films on silicon were found to have a high content of oxygen, carbon, hydrogen and substantial concentration of the substrate. Near 10% H content enrichment was found at the surface of coatings but no hydrogen enrichment at the coating–substrate interfaces was observed.  相似文献   

2.
Residual stress modulation in the diamond-like carbon coatings with incorporation of gold nanoparticles was studied critically. The films were deposited on glass and Si (1 0 0) substrates by using capacitatively coupled plasma chemical vapor deposition. Stresses in the films were determined from the broadening of the optical absorption tail and were found to decrease from 2.3 GPa to 0.48 GPa with increasing gold content (2-7 at.% Au) in the DLC matrix. Gold incorporation also made the films harder than the corresponding DLC coatings. Modulation of stress with nanocrystalline gold content in the DLC matrix was related to the relative amount of sp2/sp3 content in the DLC films.  相似文献   

3.
The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz. 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu-Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼95% sp3 bonded carbon in the films. The films are unform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.  相似文献   

4.
Amorphous hydrogenated carbon doped with silicon oxide (a-C:H:Si:O), which is referred to as silicon–carbon coatings in this work, consists of thin amorphous films, which are used as commercial solid lubricants due to their higher stability under extreme environmental conditions as compared to amorphous hydrogenated carbon. The deposition of silicon–carbon coatings from the plasma of a non-self-sustained arc discharge with a heated cathode is considered. Silicon–carbon coatings are deposited using polyphenul methylsiloxane as a precursor at a flow rate of 0.05 mL/min in an argon atmosphere at a pressure of 0.1 Pa. A high-frequency power supply is used to apply a high-frequency bias voltage to a substrate during deposition. After deposition, the mechanical properties of the coatings are studied. The maximum hardness of the coating is 20 GPa at a minimum friction coefficient of 0.16 and a wear rate of 1.3 × 10–5 mm3 N–1 m–1. Energy dispersive analysis shows that the coatings contain a significant content of carbon and oxygen (about 80 and 15%, respectively) and a low content of silicon (about 5%).  相似文献   

5.
In this work, plasma enhanced chemical vapour deposition was used to prepare hydrogenated amorphous carbon films (a-C:H) on different substrates over a wide range of thickness. In order to observe clear substrate effect the films were produced under identical growth conditions. Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopies were employed to probe the chemical bonding of the films. For the films deposited on silicon substrates, the Raman ID/IG ratio and G-peak positions were constant for most thickness. For metallic and polymeric substrates, these parameters increased with film thickness, suggesting a change from a sp3-bonded hydrogenated structure to a more sp2 network, NEXAFS results also indicate a higher sp2 content of a-C:H films grown on metals than silicon. The metals, which are poor carbide precursors, gave carbon films with low adhesion, easily delaminated from the substrate. The delamination can be decreased/eliminated by deposition of a thin (∼10 nm) silicon layer on stainless steel substrates prior to a-C:H coatings. Additionally we noted the electrical resistivity decreased with thickness and higher dielectric breakdown strength for a-C:H on silicon substrate.  相似文献   

6.
Hybrid laser- magnetron deposition system was developed and tested for study of carbon based thin film coatings. Various geometrical configurations and deposition conditions were tested. Films of TiC, TiCN, and SiC were synthesized. Films were fabricated in argon (TiC), in argon/nitrogen (TiCN), or in argon/hydrogen ambient (SiC films). Film properties were studied by SEM, XRD, GDOES, and XPS. Smooth, homogeneous film over the area of 9 cm2 were prepared. Crystalline TiC films were grown at room substrate temperature.  相似文献   

7.
Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp3/sp2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.  相似文献   

8.
Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained.During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (Troom), 100 °C, 150 °C and 200 °C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films.Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 °C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the ID/IG or sp3/sp2 ratio and not by the absolute sp3 or sp2 concentration.  相似文献   

9.
Diamond-like carbon (DLC) films deposited on different substrates by plasma enhanced chemical vapour deposition were investigated. Bonding states and film quality were characterized by FT-IR spectroscopy. The influence of the power of plasma and the deposition time on the sp2/sp3 ratio as well as the concentration of CHn bonds was studied. The influence of sp2/sp3 ratio on the formation process of conducting channels in diamond-like carbon films as a result of electrical breakdown was determined. Reproducible increase of diamond-like carbon film conductivity, with initial sp2/sp3 ratio larger than 0.16, was observed after electrical breakdown.  相似文献   

10.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

11.
Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 °C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.  相似文献   

12.
Diamond-like carbon (DLC) films can be used in a numerous industrial applications, including biomedical coatings with bactericidal properties. It has been demonstrated that DLC surface can be modified with oxygen plasma treatment. The purpose of this paper is to study the wettability and bactericidal activity of oxygen plasma-treated DLC films produced by plasma enhanced chemical vapor deposition technique. The sp3/sp2 ratio increased after the treatment due to the increase in the generation of the unstable carbon bonds caused by the energetic ions, especially O-H group. The treated DLC surface becomes superhydrophilic and rougher, although the roughness values are still lower. DLC antibacterial activity did not increased with plasma treatment. Therefore, oxygen plasma treatment can be used to make superhydrophilic DLC but not to increase its bactericidal properties.  相似文献   

13.
Amorphous carbon is an interesting material and its properties can be varied by tuning its diamond-like (sp3) fractions. The diamond-like fractions in an amorphous carbon films depends on the kinetic energy of the deposited carbon ions. Porous amorphous carbon thin films were deposited onto silicon substrates at room temperature in a vacuum chamber by Glancing Angle Pulsed Laser Deposition (GAPLD). Krypton fluoride (248 nm) laser pulses with duration of 15 ns and intensities of 1-20 GW/cm2 were used. In GAPLD, the angles between the substrate normal and the trajectory of the incident deposition flux are set to be almost 90°. Porous thin films consisting of carbon nanowires with diameters less than 100 nm were formed due to a self-shadowing effect. The kinetic energies of the deposited ions, the deposition rate of the films and the size of the nanowires were investigated. The sp3 fraction of the porous carbon films produced at intensity around 20 GW/cm2 were estimated from their Raman spectra.  相似文献   

14.
Pulsed laser deposition of hard coatings in atmospheric air   总被引:1,自引:0,他引:1  
A new laser plasma technique for non-vacuum deposition of thin films has been proposed and experimentally realized. It is based on the fact that the plasma plume, which occurs under ablation of a target in air by high-intensity short laser pulses, can penetrate through a dense gas environment without significant cooling at the distance of about 1 mm. The technique has been applied to deposit diamond-like carbon (DLC) coatings on stainless steel substrates using four different values of pulse duration: 10 ns, 300 ps, 5 ps and 130 fs. Optimization of different experimental parameters including distance between the target and the substrate, laser intensity and gases (He, Ar, N2, compressed air) blown in the deposition zone, has been performed. The deposition rate in the experiments was estimated as 2–5×10-4 nm/(cm2pulse) for the pulse energy of 1–4 mJ. The deposited amorphous carbon films with thickness of several hundred nanometers have shown high average nanohardness (10–25 GPa depending on the irradiation conditions) and good adhesion to substrates (60 MPa). According to X-ray electron spectroscopy analysis the films consist of both sp2- and sp3-bonded carbon and contain 3–7% of free oxygen in bulk. The mechanisms of DLC non-vacuum laser deposition are discussed. To demonstrate the large potential of this technique, the first results on deposition of titanium nitride using ablation of titanium in air with nitrogen jet assistance are also presented. PACS 52.38.Mf; 81.15.Fg; 81.05.Uw  相似文献   

15.
Thin films of polyethylene glycol (PEG) of average molecular weight, 1400 amu, were deposited by both matrix-assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD). The deposition was carried out in vacuum (∼10-6 Torr) with an ArF (λ=193 nm) laser at a fluence between 150 and 300 mJ/cm2. Films were deposited on NaCl plates, Si(111) wafers, and glass slides. The physiochemical properties of the films are compared via Fourier transform infrared spectroscopy (FTIR), electrospray ionization (ESI) mass spectrometry, and matrix-assisted laser desorption and ionization (MALDI) time-of-flight mass spectrometry. The results show that the MAPLE films nearly identically resemble the starting material, whereas the PLD films do not. These results are discussed within the context of biomedical applications such as drug delivery coatings and in vivo applications where there is a need for transfer of polymeric coatings of PEG without significant chemical modification. Received: 2 March 2001 / Accepted: 5 March 2001 / Published online: 23 May 2001  相似文献   

16.
Electrophoretic deposition (EPD) has been used to combine multi-walled carbon nanotubes of diameter in the range 20–30 nm and commercially available TiO2 nanoparticles (23 nm particle size) in composite films. Laminate coatings with up to four layers were produced by sequential EPD, while composite coatings were obtained by electrophoretic co-deposition of carbon nanotubes and TiO2 nanoparticles, respectively. Scanning electron microscopy was used to characterize the resultant microstructures. The mechanism of EPD of carbon nanotube/TiO2 nanoparticle composites is discussed.  相似文献   

17.
Experimental data are presented from studies of the structure and bond type of carbon atoms in amorphous carbon-nickel films deposited from pulsed vacuum-arc discharge plasma sources. X-ray photoelectron spectroscopy was used. The characteristics of the plasmon loss spectra depend significantly on the deposition parameters. Carbon exists in a mixed sp2+sp3 hybridized state in the carbon–nickel films. The ratio of sp3/sp2 carbon bonds increases when the nickel content is reduced (from 5.5 to 1.0 atomic %) and the deposition angle is increased. The structure closest to that of diamond was with a substrate bias voltage of –80 to –100 V and a deposition angle of 90°.  相似文献   

18.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

19.
徐骏  黄晓辉  李伟  王立  陈坤基 《中国物理》2002,11(5):502-505
A method in which nanometre-thick film deposition was alternated with hydrogen plasma annealing (layer-by-layer method) was applied to fabricate hydrogenated amorphous carbon films in a conventional plasma-enhanced chemical vapour deposition system.It was found that the hydrogen plasma treatment could decrease the hydrogen concentration in the films and change the sp^2/sp^3 ratio to some extent by chemical etching.Blue photoluminescence was observed at room temperature,as a result of the reduction of sp^2 clusters in the films.  相似文献   

20.
In this research, diamond-like carbon (DLC) thin films were deposited on silicon substrates by radio-frequency plasma enhanced chemical vapor deposition method using gas mixture of CH4 and Ar. The effect of different CH4/Ar gas ratio on the structure, refractive index, transmission and hardness of the DLC thin films were investigated by means of Raman spectroscopy, ellipsometry, Fourier transform Infrared Spectroscopy and nano-indentation methods, respectively. Nuclear resonant reaction analysis was used to measure the amount of hydrogen and carbon in the thin films. Furthermore, wettability of the thin films was achieved by measuring of water contact angle (WCA). The results indicated that the structural properties of the diamond-like carbon thin films are strongly dependent on the composition of gas mixture. Based on ellipsometry results, refractive index of the thin films varied in the range of 1.89–2.06 at 550 nm. FTIR results determined that deposition of DLC thin films on silicon substrate led to an increase of the light transmission in IR region and these films have the potential to be used in silicon optics as the antireflective coatings in this region. Nano-indentation analysis showed that the thin films hardness changed in the range of 7.5–11 GPa. On the other hand hydrogen content and fraction of C?H bonds in the samples increased by an increase in the gas ratio of CH4/Ar. Also, WCA measurements indicated that WCA for thin films with gas ratio of 3/7 is the most and equal to 79°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号