首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although N‐heterocyclic carbenes have been well‐studied, the simplest aminocarbene, aminomethylene H?C??NH2, has not been spectroscopically identified to date. Herein we report the gas‐phase preparation of aminomethylene by high‐vacuum flash pyrolysis of cyclopropylamine and subsequent trapping of the pyrolysate in an inert argon matrix at 12 K. Aminomethylene was characterized by matching matrix IR and UV/Vis spectroscopic data with ab initio coupled cluster computations. After UV irradiation of the matrix aminomethylene rearranges to its isomer methanimine (formaldimine) H2C=NH. Based on our experimental results and computations aminomethylene has a singlet ground state with a reaction barrier of almost 46 kcal mol?1 to methanimine so that H‐tunneling is excluded.  相似文献   

2.
3.
We present the first spectroscopic identification of hitherto unknown 1,1‐ethenediol, the enol tautomer of acetic acid. The title compound was generated in the gas phase through flash vacuum pyrolysis of malonic acid at 400 °C. The pyrolysis products were subsequently trapped in argon matrices at 10 K and characterized spectroscopically by means of IR and UV/Vis spectroscopy together with matching its spectral data with computations at the CCSD(T)/cc‐pCVTZ and B3LYP/6–311++G(2d,2p) levels of theory. Upon photolysis at λ=254 nm, the enol rearranges to acetic acid and ketene.  相似文献   

4.
5.
Under potentially prebiotic scenarios, ribose (pentose), the component of RNA is formed in meager amounts, as opposed to ribulose and xylulose (pentuloses). Consequently, replacement of ribose in RNA, with pentulose sugars, gives rise to prospective oligonucleotide candidates that are potentially prebiotic structural variants of RNA that could be formed by the same type of chemical pathways that gave rise to RNA from ribose. The potentially natural alternative (1′→3′)‐ribulo oligonucleotides and (4′→3′)‐ and (1′→3′)‐xylulo oligonucleotides consisting of adenine and thymine were synthesized and found to exhibit no self‐pairing or cross‐pairing with RNA. This signifies that even though pentulose sugars may have been abundant in a prebiotic scenario, the pentulose nucleic acids (NAs), if and when formed, would not have been competitors of RNA, or interfered with the emergence of RNA as a functional informational system. The reason for the lack of base pairing in pentulose NA highlights the contrasting and central role played by the furanosyl ring in RNA and pentulose NA, enabling and optimizing the base pairing in RNA, while impeding it in pentulose NA.  相似文献   

6.
7.
1H‐Imidazol‐4(5H)‐ones are introduced as novel nucleophilic α‐amino acid equivalents in asymmetric synthesis. These compounds not only allow highly efficient construction of tetrasubstituted stereogenic centers, but unlike hitherto known templates, provide direct access to N‐substituted (alkyl, allyl, aryl) α‐amino acid derivatives.  相似文献   

8.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

9.
10.
11.
A convergent, organocatalytic asymmetric aminomethylation of α,β‐unsaturated aldehydes by N‐heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde‐derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox‐neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β2‐amino acids bearing various substituents.  相似文献   

12.
Electrochemical synthesis based on electrons as reagents provides a broad prospect for commodity chemical manufacturing. A direct one‐step route for the electrooxidation of amino C?N bonds to nitrile C≡N bonds offers an alternative pathway for nitrile production. However, this route has not been fully explored with respect to either the chemical bond reforming process or the performance optimization. Proposed here is a model of vacancy‐rich Ni(OH)2 atomic layers for studying the performance relationship with respect to structure. Theoretical calculations show the vacancy‐induced local electropositive sites chemisorb the N atom with a lone pair of electrons and then attack the corresponding N(sp3)?H, thus accelerating amino C?N bond activation for dehydrogenation directly into the C≡N bond. Vacancy‐rich nanosheets exhibit up to 96.5 % propionitrile selectivity at a moderate potential of 1.38 V. These findings can lead to a new pathway for facilitating catalytic reactions in the chemicals industry.  相似文献   

13.
14.
15.
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability.  相似文献   

16.
Ba(CO)+ and Ba(CO)? have been produced and isolated in a low‐temperature neon matrix. The observed C?O stretching wavenumber for Ba(CO)+ of 1911.2 cm?1 is the most red‐shifted value measured for any metal carbonyl cations, indicating strong π backdonation of electron density from Ba+ to CO. Quantum chemical calculations indicate that Ba(CO)+ has a 2Π reference state, which correlates with the 2D(5d1) excited state of Ba+ that comprises significant Ba+(5dπ1)→CO(π* LUMO) backbonding, letting the Ba(CO)+ complex behave like a conventional transition‐metal carbonyl. A bonding analysis shows that the π backdonation in Ba(CO)+ is much stronger than the Ba+(5dσ/6s)←CO(HOMO) σ donation. The Ba+ cation in the 2D(5d1) excited state is a donor rather than an acceptor. Covalent bonding in the radical anion Ba(CO)? takes place mainly through Ba(5dπ)←CO?(π* SOMO) π donation and Ba(5dσ/6s)←CO?(HOMO) σ donation. The most important valence functions at barium in Ba(CO)+ cation and Ba(CO)? anion are the 5d orbitals.  相似文献   

17.
18.
19.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号