首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fluorine‐doped antiperovskite Li‐ion conductor Li2(OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all‐solid‐state Li‐ion rechargeable battery. Substitution of F? for OH? transforms orthorhombic Li2OHCl to a room‐temperature cubic phase, which shows electrochemical stability to 9 V versus Li+/Li and two orders of magnitude higher Li‐ion conductivity than that of orthorhombic Li2OHCl. An all‐solid‐state Li/LiFePO4 with F‐doped Li2OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles.  相似文献   

2.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

3.
Solid‐state Li metal batteries (SSLMBs) have attracted considerable interests due to their promising energy density as well as high safety. However, the realization of a well‐matched Li metal/solid‐state electrolyte (SSE) interface remains challenging. Herein, we report g‐C3N4 as a new interface enabler. We discover that introducing g‐C3N4 into Li metal can not only convert the Li metal/garnet‐type SSE interface from point contact to intimate contact but also greatly enhance the capability to suppress the dendritic Li formation because of the greatly enhanced viscosity, decreased surface tension of molten Li, and the in situ formation of Li3N at the interface. Thus, the resulting Li‐C3N4|SSE|Li‐C3N4 symmetric cell gives a significantly low interfacial resistance of 11 Ω cm2 and a high critical current density (CCD) of 1500 μA cm?2. In contrast, the same symmetric cell configuration with pristine Li metal electrodes has a much larger interfacial resistance (428 Ω cm2) and a much lower CCD (50 μA cm?2).  相似文献   

4.
The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm?2–8 mAh cm?2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency >99.5 % without dendrite formation or side reactions with the electrolyte.  相似文献   

5.
A proof‐of‐concept study on a liquid/liquid (L/L) two‐phase electrolyte interface is reported by using the polarity difference of solvent for the protection of Li‐metal anode with long‐term operation over 2000 h. The L/L electrolyte interface constructed by non‐polar fluorosilicane (PFTOS) and conventionally polar dimethyl sulfoxide solvents can block direct contact between conventional electrolyte and Li anode, and consequently their side reactions can be significantly eliminated. Moreover, the homogeneous Li‐ion flow and Li‐mass deposition can be realized by the formation of a thin and uniform solid‐electrolyte interphase (SEI) composed of LiF, LixC, LixSiOy between PFTOS and Li anode, as well as the super‐wettability state of PFTOS to Li anode, resulting in the suppression of Li dendrite formation. The cycling stability in a lithium–oxygen battery as a model is improved 4 times with the L/L electrolyte interface.  相似文献   

6.
Non‐aqueous Li–O2 batteries are promising for next‐generation energy storage. New battery chemistries based on LiOH, rather than Li2O2, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru‐catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e oxygen reduction reaction, the H in LiOH coming solely from added H2O and the O from both O2 and H2O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li2O2, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long‐lived battery. An optimized metal‐catalyst–electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals.  相似文献   

7.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

8.
It is well accepted that metallic tin as a discharge (reduction) product of SnOx cannot be electrochemically oxidized below 3.00 V versus Li+/Li0 due to the high stability of Li2O, though a similar oxidation can usually occur for a transition metal formed from the corresponding oxide. In this work, nanosized Ni2SnO4 and NiO/SnO2 nanocomposite were synthesized by coprecipitation reactions and subsequent heat treatment. Owing to the catalytic effect of nanosized metallic nickel, metallic tin can be electrochemically oxidized to SnO2 below 3.00 V. As a result, the reversible lithium‐storage capacities of the nanocomposite reach 970 mAh g?1 or above, much higher than the theoretical capacity (ca. 750 mAh g?1) of SnO2, NiO, or their composites. These findings extend the well‐known electrochemical conversion reaction to non‐transition‐metal compounds and may have important applications, for example, in constructing high‐capacity electrode materials and efficient catalysts.  相似文献   

9.
Li7La3Zr2O12‐based Li‐rich garnets react with water and carbon dioxide in air to form a Li‐ion insulating Li2CO3 layer on the surface of the garnet particles, which results in a large interfacial resistance for Li‐ion transfer. Here, we introduce LiF to garnet Li6.5La3Zr1.5Ta0.5O12 (LLZT) to increase the stability of the garnet electrolyte against moist air; the garnet LLZT‐2 wt % LiF (LLZT‐2LiF) has less Li2CO3 on the surface and shows a small interfacial resistance with Li metal, a solid polymer electrolyte, and organic‐liquid electrolytes. An all‐solid‐state Li/polymer/LLZT‐2LiF/LiFePO4 battery has a high Coulombic efficiency and long cycle life; a Li‐S cell with the LLZT‐2LiF electrolyte as a separator, which blocks the polysulfide transport towards the Li‐metal, also has high Coulombic efficiency and kept 93 % of its capacity after 100 cycles.  相似文献   

10.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

11.
The garnet electrolyte presents poor wettability with Li metal, resulting in an extremely large interfacial impedance and drastic growth of Li dendrites. Herein, a novel ultra‐stable conductive composite interface (CCI) consisting of LiySn alloy and Li3N is constructed in situ between Li6.4La3Zr1.4Ta0.6O12 (LLZTO) pellet and Li metal by a conversion reaction of SnNx with Li metal at 300 °C. The LiySn alloy as a continuous and robust bridge between LLZTO and Li metal can effectively reduce the LLZTO/Li interfacial resistance from 4468.0 Ω to 164.8 Ω. Meanwhile, the Li3N as a fast Li‐ion channel can efficiently transfer Li ions and give their uniform distribution at the LLZTO/Li interface. Therefore, the Li/LLZTO@CCI/Li symmetric battery stably cycles for 1200 h without short circuit, and the all‐solid‐state high‐voltage Li/LLZTO@CCI/LiNi0.5Co0.2Mn0.3O2 battery achieves a specific capacity of 161.4 mAh g?1 at 0.25 C with a capacity retention rate of 92.6 % and coulombic efficiency of 100.0 % after 200 cycles at 25 °C.  相似文献   

12.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

13.
Reactive metal oxides are conventionally reduced to metal by metallothermic reduction. This paper presents on the efficient reduction method based on the electrochemical reaction in a molten LiCl–Li2O electrolyte at 650 °C. An underpotential deposition of Li on uranium oxides was observed that enabled the mass electrochemical reduction of U3O8 to U. An advantage of using in-situ generated Li as a reductant is that a high-speed electrochemical reduction could be achieved with a wider operating voltage window when compared to a direct electrochemical reduction.  相似文献   

14.
To discuss the source of sulfolane (SL) in decreasing the interface resistance of Li/mesophase carbon microbeads cell with lithium bis(oxalate)borate (LiBOB)‐based electrolyte, the morphology and the composition of the solid electrolyte interphase (SEI) layer on the surface of carbonaceous anode material have been investigated. Compared with the cell with 0.7 mol l?1 LiBOB‐ethylene carbonate/ethyl methyl carbonate (EMC) (1 : 1, v/v) electrolyte, the cell with 0.7 mol l?1 LiBOB‐SL/EMC (1 : 1, v/v) electrolyte shows better film‐forming characteristics in SEM (SEI) spectra. According to the results obtained from Fourier transform infrared spectroscopy, XPS, and density functional theory calculations, SL is reduced to Li2SO3 and LiO2S(CH2)8SO2Li through electrochemical processes, which happens prior to the reduction of either ethylene carbonate or EMC. It is believed that the root of impedance reduction benefits from the rich existence of sulfurous compounds in SEI layer, which are better conductors of Li+ ions than analogical carbonates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Nanoporous MnO frameworks with highly dispersed Co nanoparticles were produced from MnCO3 precursors prepared in a gel matrix. The MnO frameworks that contain 20 mol % Co exhibited excellent cycle performance as an anode material for Li‐ion batteries. The solid–electrolyte interphase (SEI) formed in the frameworks through the electrochemical reaction mediates the active materials, such as MnO, Mn, and Li2O, during the conversion reaction in the charge–discharge cycle. The Co nanoparticles and SEI provide the electron and Li‐ion conductive networks, respectively. The ternary nanocomposites of the MnO framework, metallic Co nanoparticles, and embedded SEI are categorized as durable anode materials for Li‐ion batteries.  相似文献   

16.
In the title compound, [Li(C5H3N4O2)(H2O)2]n, the coordinate geometry about the Li+ ion is distorted tetrahedral and the Li+ ion is bonded to N and O atoms of adjacent ligand mol­ecules forming an infinite polymeric chain with Li—O and Li—N bond lengths of 1.901 (5) and 2.043 (6) Å, respectively. Tetrahedral coordination at the Li+ ion is completed by two cis water mol­ecules [Li—O 1.985 (6) and 1.946 (6) Å]. The crystal structure is stabilized both by the polymeric structure and by a hydrogen‐bond network involving N—H?O, O—H?O and O—H?N hydrogen bonds.  相似文献   

17.
The utilization of CO2 in Li‐CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles’ heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme‐based liquid electrolyte, was used to fabricate a rechargeable Li‐CO2 battery with a carbon nanotube‐based gas electrode. The discharge product of Li2CO3 formed in the GPE‐based Li‐CO2 battery exhibits a particle‐shaped morphology with poor crystallinity, which is different from the contiguous polymer‐like and crystalline discharge product in conventional Li‐CO2 battery using a liquid electrolyte. Accordingly, the GPE‐based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g−1) are much higher than most of previous reports, which points a new way to develop high‐performance Li‐CO2 batteries.  相似文献   

18.
The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.  相似文献   

19.
Lithium (Li) dendrite formation is one of the major hurdles limiting the development of Li‐metal batteries, including Li‐O2 batteries. Herein, we report the first observation of the dendrite‐free epitaxial growth of a Li metal up to 10‐μm thick during charging (plating) in the LiBr‐LiNO3 dual anion electrolyte under O2 atmosphere. This phenomenon is due to the formation of an ultrathin and homogeneous Li2O‐rich solid‐electrolyte interphase (SEI) layer in the preceding discharge (stripping) process, where the corrosive nature of Br? seems to give rise to remove the original incompact passivation layer and NO3? oxidizes (passivates) the freshly formed Li surface to prevent further reactions with the electrolyte. Such reactions keep the SEI thin (<100 nm) and facilitates the electropolishing effect and gets ready for the epitaxial electroplating of Li in the following charge process.  相似文献   

20.
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm?3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm?2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L?1, surpassing that of LiCoO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号