首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Mechanoluminescence (ML) materials are attracting increasing interest owing to promising applications in various areas. However, to date, it remains a major challenge to develop a precise and universal route to achieving organic ML materials. Herein, we show that ML can be easily realized in organic piezophotonic host–guest crystals, under conditions in which neither the host nor the guest is ML-active. The experimental and theoretical results reveal that excitons of the host generated by piezoelectricity can be harvested effectively by the guest for light emission, owing to the restraint of intersystem crossing process. Moreover, different host–guest crystals are constructed, wherein the emission color, intensity, color purity, and emission duration of ML can be manipulated. This work deepens our understanding of organic ML generation in piezophotonic host–guest crystals and provides an inspiring principle to design more organic ML materials.  相似文献   

2.
Water‐soluble three‐dimensional (3D) polymers are structurally ideal for the construction of ordered porous materials for in‐situ and tunable loading and release of guests. For many years, studies on ordered porous materials have been confined to crystalline solids. Since 2014, self‐assembly has been developed as a robust strategy for the preparation of water‐soluble 3D polymers that possess defined and intrinsic porosity. Through the encapsulation of cucurbit[8]uril for aromatic dimers, ordered diamondoid supramolecular organic frameworks can be assembled from tetrahedral monomers. With [Ru(bipy)3]2+‐derived octahedral complexes as precursors, cubic supramolecular metal‐organic frameworks have been assembled. One supramolecular organic framework has also been utilized to prepare the first homogeneous covalent organic framework through the [2+2] alkene cycloaddition, whereas the quantitative formation of the hydrazone bonds can be utilized to synthesize flexible porous organic frameworks. The new water‐soluble ordered and flexible polymeric frameworks are able to include drugs and biomacromolecules to accomplish in situ loading and intracellular delivery and to enrich photosensitizers and catalysts to enhance discrete visible light‐induced reactions. This review highlights the advances.  相似文献   

3.
The molecular‐level structuration of two full photosystems into conjugated porous organic polymers is reported. The strategy of heterogenization gives rise to photosystems which are still fully active after 4 days of continuous illumination. Those materials catalyze the carbon dioxide photoreduction driven by visible light to produce up to three grams of formate per gram of catalyst. The covalent tethering of the two active sites into a single framework is shown to play a key role in the visible light activation of the catalyst. The unprecedented long‐term efficiency arises from an optimal photoinduced electron transfer from the light harvesting moiety to the catalytic site as anticipated by quantum mechanical calculations and evidenced by in situ ultrafast time‐resolved spectroscopy.  相似文献   

4.
Organic polymers are usually amorphous or possess very low crystallinity. The metal complexes of organic polymeric ligands are also difficult to crystallize by traditional methods because of their poor solubilities and their 3D structures can not be determined by single‐crystal X‐ray crystallography owing to a lack of single crystals. Herein, we report the crystal structure of a 1D ZnII coordination polymer fused with an organic polymer ligand made in situ by a [2+2] cycloaddition reaction of a six‐fold interpenetrated metal–organic framework. It is also shown that this organic polymer ligand can be depolymerized in a single‐crystal‐to‐single‐crystal (SCSC) fashion by heating. This strategy could potentially be extended to make a range of monocrystalline metal organopolymeric complexes and metal–organic organopolymeric hybrid materials. Such monocrystalline metal complexes of organic polymers have hitherto been inaccessible for materials researchers.  相似文献   

5.
Photoresponsive materials that change in response to light have been studied for a range of applications. These materials are often metastable during irradiation, returning to their pre‐irradiated state after removal of the light source. Herein, we report a polymer gel comprising poly(ethylene glycol) star polymers linked by Cu24L24 metal–organic cages/polyhedra (MOCs) with coumarin ligands. In the presence of UV light, a photosensitizer, and a hydrogen donor, this “polyMOC” material can be reversibly switched between CuII, CuI, and Cu0. The instability of the MOC junctions in the CuI and Cu0 states leads to network disassembly, forming CuI/Cu0 solutions, respectively, that are stable until re‐oxidation to CuII and supramolecular gelation. This reversible disassembly of the polyMOC network can occur in the presence of a fixed covalent second network generated in situ by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), providing interpenetrating supramolecular and covalent networks.  相似文献   

6.
Mechanoluminescence (ML) and room‐temperature photophosphorescence (RTP) were achieved in polymorphisms of a triphenylamine derivative with ortho‐substitution. This molecular packing‐dependent emission afforded crucial information to deeply understand the intrinsic mechanism of different emission forms and the possible packing–function relationship. With the incorporation of solid‐state 13C NMR spectra of single crystals, as well as the analysis of crystal structures, the preferred packing modes for ML and/or RTP were investigated in detail, which can guide the reasonable design of organic molecules with special light‐emission properties.  相似文献   

7.
Pyrimidin‐2‐yl sulfonate, as an efficient reaction partner, can be easily prepared from cheap commercial materials, reacted with sodium azide and alkynes to give C2‐triazolo functionalized pyrimidines in good yields under mild reaction conditions. This procedure eliminates the need to handle organic halides or organic azides, as they are generated in situ, making this already powerful click process even more user‐friendly and safe.  相似文献   

8.
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light‐emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation‐induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE‐active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long‐lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.  相似文献   

9.
Higher efficiency in the end‐use of energy requires substantial progress in lighting concepts. All the technologies under development are based on solid‐state electroluminescent materials and belong to the general area of solid‐state lighting (SSL). The two main technologies being developed in SSL are light‐emitting diodes (LEDs) and organic light‐emitting diodes (OLEDs), but in recent years, light‐emitting electrochemical cells (LECs) have emerged as an alternative option. The luminescent materials in LECs are either luminescent polymers together with ionic salts or ionic species, such as ionic transition‐metal complexes (iTMCs). Cyclometalated complexes of IrIII are by far the most utilized class of iTMCs in LECs. Herein, we show how these complexes can be prepared and discuss their unique electronic, photophysical, and photochemical properties. Finally, the progress in the performance of iTMCs based LECs, in terms of turn‐on time, stability, efficiency, and color is presented.  相似文献   

10.
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light‐emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation‐induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE‐active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long‐lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.  相似文献   

11.
Solid‐state luminescence of organic dyes is an elusive frontier, and understanding and designing solid‐state stimuli‐responsive materials is not trivial. “Mechanoluminescence” (ML) or “triboluminescence” (TL), which is associated with fracture or force‐initiated luminescence from a material, is currently attracting new interest. Fracturing the surfaces of organic crystals ordered in noncentrosymmetric space groups can electronically excite the surface and neighboring molecules through piezo‐ or pyroelectric effects, and this can result in luminescence when the molecules relax back to their ground states. The combined duration of these two consecutive phenomena leads to force‐generated luminescence or TL. Although TL has been known for a very long time, examples of TL‐active materials are scarce, but are increasing as synthetic and characterization procedures develop. The question is now whether the relatively rare phenomenon of TL needs to be reevaluated to obtain a broader understanding of the subject.  相似文献   

12.
We have demonstrated an innovative ability of mechanoluminescent (ML) material as a light source for the first time. By appropriate smart size control and nondestructive mechanical stimulation, the ML particle can be considered a promising candidate of in situ light source for bio-imaging and photo-therapy even in a human body.  相似文献   

13.
Soft luminescent materials are attractive for optoelectronic applications, however, switching dominant chromophores for property enrichment remains a challenge. Herein, we report the first case of a soft organic molecule (DOS) featuring selective expression of chromophores. In response to various external stimuli, different chromophores of DOS can take turns working through conformation changes, exhibiting full‐colour emissions peaking from 469 nm to 583 nm from ten individual single crystals. Dynamic triplet‐exciton behaviours including thermally activated delayed fluorescence (TADF), room‐temperature phosphorescence (RTP), mechanoluminescence (ML), and distinct mechano‐responsive luminescence (MRL) can all be realized. This novel designed DOS molecule provides a multifunctional platform for detection of volatile organic compounds (VOCs), multicolour dynamic displays, sensing, anticounterfeiting, and hopefully many others.  相似文献   

14.
Mimicking biological proton pumps to achieve stimuli‐responsive protonic solids has long been of great interest for their diverse applications in fuel cells, chemical sensors, and bio‐electronic devices. Now, dynamic light‐responsive metal–organic framework hybrid membranes can be obtained by in situ encapsulation of photoactive molecules (sulfonated spiropyran, SSP), as the molecular valve, into the cavities of the host ZIF‐8. The configuration of SSP can be changed and switched reversibly in response to light, generating different mobile acidic protons and thus high on/off photoswitchable proton conductivity in the hybrid membranes and device. This device exhibits a high proton conductivity, fast response time, and extremely large on/off ratio upon visible‐light irradiation. This approach might provide a platform for creating emerging smart protonic solids with potential applications in the remote‐controllable chemical sensors or proton‐conducting field‐effect transistors.  相似文献   

15.
Two‐dimensional (2D) materials and ultrathin nanosheets are advantageous for elevating the catalysis performance and elucidating the catalysis mechanism of heterogeneous catalysts, but they are mostly restricted to inorganic or organic materials based on covalent bonds. We report an electrochemical/chemical exfoliation strategy for synthesizing metal–organic 2D materials based on coordination bonds. A catechol functionalized ligand is used as the redox active pillar to construct a pillared‐layer framework. When the 3D pillared‐layer MOF serves as an electrocatalyst for water oxidation (pH 13), the pillar ligands can be oxidized in situ and removed. The remaining ultrathin (2 nm) nanosheets of the metal–organic layers are an efficient catalyst with overpotentials as low as 211 mV at 10 mA cm?2 and a turnover frequency as high as 30 s?1 at an overpotential of 300 mV.  相似文献   

16.
Nanographenes (NGs), also known as graphene quantum dots, have recently been developed as nanoscale graphene fragments. These nanocarbon species can be excited with UV light and emit light from the UV‐to‐visible region. This photoemission has received great attraction across multiple scientific fields. NGs can be produced by cutting off carbon sources or fusing small organic molecules to grow graphitic structures. Furthermore, the organic synthesis of NGs has been intensely studied. Recently, the number of research papers on postsynthetic modification of NGs has gradually increased. Installed organic groups can tune the properties of NGs and provide new functionalities, opening the door for the development of sophisticated carbon‐based functional materials. This review sheds light on recent progress in the postsynthetic modification of NGs and provides a brief summary of their production methods.  相似文献   

17.
Herein, we introduce an additive‐free visible‐light‐induced Passerini multicomponent polymerization (MCP) for the generation of high molar mass chains. In place of classical aldehydes (or ketones), highly reactive, in situ photogenerated thioaldehydes are exploited along with isocyanides and carboxylic acids. Prone to side reactions, the thioaldehyde moieties create a complex reaction environment which can be tamed by optimizing the synthetic conditions utilizing stochastic reaction path analysis, highlighting the potential of semi‐batch procedures. Once the complex MCP environment is understood, step‐growth polymers can be synthesized under mild reaction conditions which—after a Mumm rearrangement—result in the incorporation of thioester moieties directly into the polymer backbone, leading to soft matter materials that can be degraded by straightforward aminolysis or chain expanded by thiirane insertion.  相似文献   

18.
Cross‐coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non‐recyclable noble‐metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal‐free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C?O cross‐couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.  相似文献   

19.
We report an in situ polymerization strategy to incorporate a thermo‐responsive polymer, poly(N‐isopropylacrylamide) (PNIPAM), with controlled loadings into the cavity of a mesoporous metal–organic framework (MOF), MIL‐101(Cr). The resulting MOF/polymer composites exhibit an unprecedented temperature‐triggered water capture and release behavior originating from the thermo‐responsive phase transition of the PNIPAM component. This result sheds light on the development of stimuli‐responsive porous adsorbent materials for water capture and heat transfer applications under relatively mild operating conditions.  相似文献   

20.
White‐light‐emitting materials with high mobility are necessary for organic white‐light‐emitting transistors, which can be used for self‐driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures—2‐fluorenyl‐2‐anthracene (FlAnt) with blue emission and 2‐anthryl‐2‐anthracence (2A) with greenish‐yellow emission—to fabricate OLED devices, which showed unusual solid‐state white‐light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm2 V−1 s−1. This simple method provides new insight into the design of high‐performance white‐emitting transistor materials and structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号