首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
FeOxHy and Fe-containing Ni/Co oxyhydroxides are the most-active catalysts for the oxygen evolution reaction (OER) in alkaline media. However, the activity of Fe sites appears strongly dependent on the electrode-substrate material and/or the elemental composition of the matrix in which it is embedded. A fundamental understanding of these interactions that modulate the OER activity of FeOxHy is lacking. We report the use of cyclic voltammetry and chronopotentiometry to assess the substrate-dependent activity of FeOxHy on a number of commonly used electrode substrates, including Au, Pt, Pd, Cu, and C. We also evaluate the OER activity and Tafel behavior of these metallic substrates in 1 M KOH aqueous solution with Fe3+ and other electrolyte impurities. We find that the OER activity of FeOxHy varies by substrate in the order Au>Pd≈Pt≈Cu>C. The trend may be caused by differences in the adsorption strength of the Fe oxo ion on the substrate, where a stronger adhesion results in more adsorbed Fe at the interface during steady-state OER and possibly a decreased charge-transfer resistance at the FeOxHy-substrate interface. These results suggest that the local atomic and electronic structure of [FeO6] units play an important role in catalysis of the OER as the activity can be tuned substantially by substrate interactions.  相似文献   

2.
3.
Combined high‐resolution fluorescence detection X‐ray absorption near‐edge spectroscopy, X‐ray diffraction, and X‐ray emission spectroscopy have been employed under operando conditions to obtain detailed new insight into the nature of the Mo species on zeolite ZSM‐5 during methane dehydroaromatization. The results show that isolated Mo–oxo species present after calcination are converted by CH4 into metastable MoCxOy species, which are primarily responsible for C2Hx/C3Hx formation. Further carburization leads to MoC3 clusters, whose presence coincides with benzene formation. Both sintering of MoC3 and accumulation of large hydrocarbons on the external surface, evidenced by fluorescence‐lifetime imaging microscopy, are principally responsible for the decrease in catalytic performance. These results show the importance of controlling Mo speciation to achieve the desired product formation, which has important implications for realizing the impact of CH4 as a source for platform chemicals.  相似文献   

4.
Single‐atom nanozymes (SAzymes) with high atomic utilization, excellent catalytic activities, and selectivity have recently attracted significant interest. Usually, they contain only isolated metal atoms embedded in host matrices. However, traditional measuring instruments are extremely difficult to obtain their useful structural information due to ultra‐low metal loading, amorphous structure, coordination with light‐weight surface atoms and/or co‐existing of other metal elements. Synchrotron radiation‐based X‐ray absorption fine structure spectroscopy (XAFS) has demonstrated its usefulness for this type of catalyst. In this mini‐review, we have summarized the recent progress using XAFS to characterize the fine atomic structure of these nanozymes. The synthetic strategies of SAzymes, the principle of XAFS, delicate structural information by XAFS, and the applications of SAzymes have been presented. Furthermore, the outlook and challenges in this active research field have also been discussed. We expect that the help of XAFS can offer a wealth of opportunities to design and develop more efficient SAzymes and apply them to various fields.  相似文献   

5.
Developing high‐efficiency and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a crucial bottleneck on the way to the practical applications of rechargeable energy storage technologies and water splitting for producing clean fuel (H2). In recent years, NiFe‐based materials have proven to be excellent electrocatalysts for OER. Understanding the characteristics that affect OER activity and determining the OER mechanism are of vital importance for the development of OER electrocatalysts. Therefore, in situ characterization techniques performed under OER conditions are urgently needed to monitor the key intermediates together with identifying the OER active centers and phases. In this Minireview, recent advances regarding in situ techniques for the characterization of NiFe‐based electrocatalysts are thoroughly summarized, including Raman spectroscopy, X‐ray absorption spectroscopy, ambient pressure X‐ray photoelectron spectroscopy, Mössbauer spectroscopy, Ultraviolet–visible spectroscopy, differential electrochemical mass spectrometry, and surface interrogation scanning electrochemical microscopy. The results from these in situ measurements not only reveal the structural transformation and the progressive oxidation of the catalytic species under OER conditions, but also disclose the crucial role of Ni and Fe during the OER. Finally, the need for developing new in situ techniques and theoretical investigations is discussed to better understand the OER mechanism and design promising OER electrocatalysts.  相似文献   

6.
A state‐of‐the‐art operando spectroscopic technique is applied to Co/TiO2 catalysts, which account for nearly half of the world's transportation fuels produced by Fischer–Tropsch catalysis. This allows determination of, at a spatial resolution of approximately 50 nm, the interdependence of formed hydrocarbon species in the inorganic catalyst. Observed trends show intra‐ and interparticular heterogeneities previously believed not to occur in particles under 200 μm. These heterogeneities are strongly dependent on changes in H2/CO ratio, but also on changes thereby induced on the Co and Ti valence states. We have captured the genesis of an active FTS particle over its propagation to steady‐state operation, in which microgradients lead to the gradual saturation of the Co/TiO2 catalyst surface with long chain hydrocarbons (i.e., organic film formation).  相似文献   

7.
Electrochemical water splitting is a clean technology for H2 fuels, but greatly hindered by the slow kinetics of the oxygen evolution reaction (OER). Herein, a series of spinel‐structured nanosheets with oxygen deficiencies and ultrathin thicknesses were designed to increase the reactivity and the number of active sites of the catalysts, which were then taken as an excellent platform for promoting the water oxidation process. Theoretical investigations showed that the oxygen vacancies confined in the ultrathin nanosheet could lower the adsorption energy of H2O, leading to increased OER efficiency. As expected, the NiCo2O4 ultrathin nanosheets rich in oxygen vacancies exhibited a large current density of 285 mA cm?2 at 0.8 V and a small overpotential of 0.32 V, both of which are superior to the corresponding values of bulk samples or samples with few oxygen deficiencies and even higher than those of most reported non‐precious‐metal catalysts. This work should provide a new pathway for the design of advanced OER catalysts.  相似文献   

8.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   

9.
10.
The role of the cobalt ion in the entropy‐ and optically‐driven valence tautomeric (VT) interconversion exhibited by the [Co(Me2tpa)(DTBdiox)](PF6)?C6H5CH3 complex (Me2tpa=bis (6‐methyl‐(2‐pyridylmethyl))(2‐pyridylmethyl)amine, DBdiox=3,5‐ditertbutyl‐dioxolene) is established by means of X‐ray absorption spectroscopy (XAS). Analysis of the pre‐edge features at 6 and 300 K in the Co K‐edge XAS spectra using a ligand field multiplet approach allows us to obtain detailed information on the electronic structures of the metal ion in the two redox isomers. The temperature dependence of the spectra confirms the occurrence of a thermally induced VT transition and suggests that nucleation and distortion of the phase boundaries take place during the process. Moreover, optically induced metastable state formation is monitored at low temperatures—with a high degree of reproducibility—without changing the position of measurement on the sample during the experiment. This result paves the way for the use of such a highly sensitive technique for the investigation of photoswitchable materials in non‐crystalline and nanostructured environments.  相似文献   

11.
Nickel iron oxyhydroxide is the benchmark catalyst for the oxygen evolution reaction (OER) in alkaline medium. Whereas the presence of Fe ions is essential to the high activity, the functions of Fe are currently under debate. Using oxygen isotope labeling and operando Raman spectroscopic experiments, we obtain turnover frequencies (TOFs) of both Ni and Fe sites for a series of Ni and NiFe layered double hydroxides (LDHs), which are structurally defined samples of the corresponding oxyhydroxides. The Fe sites have TOFs 20–200 times higher than the Ni sites such that at an Fe content of 4.7 % and above the Fe sites dominate the catalysis. Higher Fe contents lead to larger structural disorder of the NiOOH host. A volcano‐type correlation was found between the TOFs of Fe sites and the structural disorder of NiOOH. Our work elucidates the origin of the Fe‐dependent activity of NiFe LDH, and suggests structural ordering as a strategy to improve OER catalysts.  相似文献   

12.
The surface oxidation of FeCr alloys with 18, 28, and 43 mass‐% Cr was investigated in situ using grazing‐incidence X‐ray absorption spectroscopy (GIXAS) at the chromium and iron K‐edges. Oxidation in air was monitored in situ in the temperature range from 290 K to 680 K. The standard GIXAS data analysis is extended for the treatment of a single layer model in order to estimate the chromium concentrations of the oxide layer and of the near‐interface substrate as well as the oxide layer thickness. XANES analysis shows transitions from b.c.c. Fe to corundum type Fe2O3 and from b.c.c. Cr to corundum type Cr2O3. The initial oxide layers are 1.1‐1.4 nm thick and contain 60‐90 mass‐% chromium, while the near‐interface substrate is depleted in Cr. During heating, iron oxide growth dominates up to 560‐600 K. Then the chromium oxide layer loses its passivation effect and Cr oxidation sets in.  相似文献   

13.
14.
An anti‐metastatic drug, NAMI‐A ((ImH)[RuIIICl4(Im)(dmso)]; Im=imidazole, dmso=S‐bound dimethylsulfoxide), and a cytotoxic drug, KP1019 ((IndH)[RuIIICl4(Ind)2]; Ind=indazole), are two Ru‐based anticancer drugs in human clinical trials. Their reactivities under biologically relevant conditions, including aqueous buffers, protein solutions or gels (e.g, albumin, transferrin and collagen), undiluted blood serum, cell‐culture medium and human liver (HepG2) cancer cells, were studied by Ru K‐edge X‐ray absorption spectroscopy (XAS). These XAS data were fitted from linear combinations of spectra of well‐characterised Ru compounds. The absence of XAS data from the parent drugs in these fits points to profound changes in the coordination environments of RuIII. The fits point to the presence of RuIV/III clusters and binding of RuIII to S‐donor groups, amine/imine and carboxylato groups of proteins. Cellular uptake of KP1019 is approximately 20‐fold higher than that of NAMI‐A under the same conditions, but it diminishes drastically after the decomposition of KP1019 in cell‐culture media, which indicate that the parent complex is taken in by cells through passive diffusion.  相似文献   

15.
16.
Bridging the gap between high‐vacuum soft X‐ray absorption spectroscopy and real systems under ambient conditions probes chemical reactions in situ during deposition and annealing processes. The origin of highly efficient buffer layers in Zn(S,O) is the complex formation between Zn2+ and the S?C group of thiourea (see schematic), which allows ligand‐to‐metal and metal‐to‐ligand charge transfer (LMCT and MLCT).

  相似文献   


17.
18.
Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal–air batteries. It is highly challenging but desirable to develop low‐cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden–Popper family of Lan+1NinO3n+1 (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni?O bond lengths and the hyperstoichiometric oxides in the rock‐salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH? content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.  相似文献   

19.
The metal–organic framework (MOF) [Pd(2‐pymo)2]n (2‐pymo=2‐pyrimidinolate) was used as catalyst in the hydrogenation of 1‐octene. During catalytic hydrogenation, the changes at the metal nodes and linkers of the MOF were investigated by in situ X‐ray absorption spectroscopy (XAS) and IR spectroscopy. With the help of extended X‐ray absorption fine structure and X‐ray absorption near edge structure data, Quick‐XAS, and IR spectroscopy, detailed insights into the catalytic relevance of Pd2+/Pd0 in the hydrogenation of 1‐octene could be achieved. Shortly after exposure of the catalyst to H2 and simultaneously with the hydrogenation of 1‐octene, the aromatic rings of the linker molecules are hydrogenated rapidly. Up to this point, the MOF structure remained intact. After completion of linker hydrogenation, the linkers were also protonated. When half of the linker molecules were protonated, the onset of reduction of the Pd2+ centers to Pd0 was observed and the hydrogenation activity decreased, followed by fast reduction of the palladium centers and collapse of the MOF structure. Major fractions of Pd0 are only observed when the hydrogenation of 1‐octene is almost finished. Consequently, the Pd2+ nodes of the MOF [Pd(2‐pymo)2]n are identified as active centers in the hydrogenation of 1‐octene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号