首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new application of silicon Grignard reagents in C(sp3)?Si bond formation is reported. With the aid of BF3?OEt2, these silicon nucleophiles add across alkenes activated by various azaaryl groups under copper catalysis. An enantioselective version employing benzoxazole‐activated alkenes as substrates and a CuI‐josiphos complex as catalyst has been developed, forming the C(sp3)?Si bond with good to high enantiomeric ratios (up to 97:3). The method expands the toolbox for “conjugate addition” type C(sp3)?Si bond formation.  相似文献   

2.
A wide range of air‐stable, solid, polyfunctional aryl and heteroarylzinc pivalates were efficiently prepared by either magnesium insertion or Hal/Mg exchange followed by transmetalation with Zn(OPiv)2 (OPiv=pivalate). By reducing the amount of LiCl the air stability could be significantly enhanced compared with previously prepared reagents. An alternative route is directed magnesiation using TMPMgCl ? LiCl (TMP=2,2,6,6‐tetramethylpiperidyl) followed by transmetalation with Zn(OPiv)2 or, for very sensitive substrates, direct zincation by using TMPZnOPiv. These zinc reagents not only show excellent stability towards air, but they also undergo a broad range of C?C bond‐formation reactions, such as allylation and carbocupration reactions, as well as addition to aldehydes and 1,4‐addition reactions. Acylation reactions can be performed by using an excess of TMSCl to overcome side reactions of the omnipresent pivalate anion.  相似文献   

3.
An enantio‐ and regioselective allylic silylation of linear allylic phosphates that makes use of catalytically generated cuprate‐type silicon nucleophiles is reported. The method relies on soft bis(triorganosilyl) zincs as silicon pronucleophiles that are prepared in situ from the corresponding hard lithium reagents by transmetalation with ZnCl2. With a preformed chiral N‐heterocyclic carbene–copper(I) complex as catalyst, exceedingly high enantiomeric excesses are achieved. The new method is superior to existing ones using a silicon–boron reagent as the source of the silicon nucleophile.  相似文献   

4.
A new route to the direct preparation of H‐phosphinate esters has been explored. The ring‐opening reaction of cyclic ether (tetrahydrofuran or tetrahydropyrane) was carried out with magnesium halide in the presence of phosphine halide (PRCl2 or PCl3). The process is straightforward and all the reagents are relatively cheap and readily available. Magnesium halide‐mediated THF ring‐opening (SN2@C) and the subsequent SN2@P elementary reactions that giving rise to the intermediate of haloalkyl phosphinates have been discussed based on our experimental findings ( Path I : SN2@C−+SN2@P). Another possible route, the direct SN2 between THF (nucleophile) and phosphine halide (electrophile) that followed by THF ring opening by halide dissociated from phosphine halide ( Path II: SN2@P−+SN2@C), was also proposed. However, path II is the least likely reaction path because neutral THF is not a good nucleophile. H‐phosphinate esters could be readily available in the subsequent hydrolysis process. Considering the ionic bond strength in magnesium halides and the nucleophilicity of halides dissociated from MgX2 in protic solvents like water, MgBr2 is recommended for ring‐opening reactions of cyclic ethers.  相似文献   

5.
Robust procedures for two mechanistically distinct C(sp3)?Ge bond formations from alkyl electrophiles and germanium nucleophiles are reported. The germanium reagents were made available as bench‐stable solutions by lithium‐to‐magnesium and lithium‐to‐zinc transmetalation, respectively. The germanium Grignard reagent reacts with various primary and secondary alkyl electrophiles by an ionic nucleophilic displacement. Conversely, the coupling of the corresponding zinc reagent requires a nickel catalyst, which then engages in radical bond formations with primary, secondary, and even tertiary alkyl bromides. Both methods avoid the regioselectivity issue of alkene hydrogermylation and enable the synthesis of a wide range of functionalized alkyl‐substituted germanes.  相似文献   

6.
The reaction of PbCl2 with the Grignard compound RMgBr (R = 2,4,6‐Et3C6H2) furnishes orange red crystals of the adduct R2Pb…MgBr2(thf)4…PbR2 ( 4 ), in which two plumbylene molecules are linked through contacts with the bromine atoms of the MgBr2(thf)4 molecule. The unusual bonding situation in 4 is reflected by a strictly linear Br–Mg–Br framework, a short Pb…Br separation of 296.4(2) pm, and an Mg–Br…Pb angle of 136.84(7)?.  相似文献   

7.
Chiral secondary alkylcopper reagents were prepared from chiral secondary alkyl iodides by a retentive I/Li exchange followed by a retentive transmetalation with CuBr?P(OEt)3. Switching the solvent to THF significantly increased their configurational stability and made these copper reagents suitable for regioselective allylic substitutions. The optically enriched copper species underwent SN2 substitutions with allylic bromides (up to >99 % SN2 regioselectivity). The addition of ZnCl2 and the use of chiral allylic phosphates allowed to switch the regioselectivity towards SN2′ substitution (up to >99 % SN2′ regioselectivity) and to perform highly selective anti‐SN2′ substitutions with absolute control over two adjacent stereocenters. This method was applied in the total synthesis of the three ant pheromones (+)‐lasiol, (+)‐13‐norfaranal, and (+)‐faranal (up to 98:2 dr, 99 % ee).  相似文献   

8.
The copper-catalyzed electrophilic amination of functionalized diarylzinc reagents with O-acyl hydroxylamines allows for the preparation of functionalized tertiary arylamines in high yields, and is noteworthy for the mild reaction conditions employed. The functionalized diarylzinc reagents were prepared via an iodine/magnesium exchange of the corresponding aryl iodide followed by transmetalation of the resultant Grignard species with ZnCl(2).  相似文献   

9.
α,α‐Dibromotoluene 1 was found to be polymerized by the reaction with excess Mg to give poly(phenylmethylene)s 2 , whose main chains were partially dehydrogenated to carbon–carbon double bonds (C?C). The C?Cs in 2 can be brominated by treatment with Br2. The polymerization mechanism was presumed to include the formation of Grignard reagents of various species with benzylic C? Br bonds and the nucleophilic attacks of the Grignard reagents to various compounds with benzylic C? Br bonds. Copolymerization of 1 with dichlorodimethylsilane successfully proceeded. Mg/Cu‐mediated copolycondensation of 1 with 1,6‐dibromohexane proceeded to give polymers that have similar compositions to those of random copolymers of ethylene and styrene. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5661–5671, 2006  相似文献   

10.
Organozirconocenes are versatile synthetic intermediates that can undergo carbonylation to yield acyl anion equivalents. Zirconocene hydrochloride ([Cp2ZrHCl]) is often the reagent of choice for accessing these intermediates but generates organozirconocenes only from alkenes and alkynes. This requirement eliminates a broad range of substrates. For example, organozirconocenes in which the zirconium center is bonded to an aromatic ring, a benzylic group, or an alkyl group that possesses a tertiary or quaternary carbon atom α to the carbon–zirconium bond can not be formed in this way. To provide more generalized access to acyl zirconium reagents, we explored the transmetalation of Grignard reagents with zirconocene dichloride under a CO atmosphere. This protocol generates acyl zirconium(IV) complexes that are inaccessible with the Schwartz reagent, including those derived from secondary and tertiary alkyl and aryl Grignard reagents.  相似文献   

11.
Magnesium(I) halides (MgIX; X=Cl, Br, I), as high temperature molecules, are trapped and finally stored at ?80 °C in toluene/donor solutions. These solutions provide insights into the fundamental mechanism of reduction reactions using activated magnesium metal as a prototype for every base metal. The most important example of such a reaction is the preparation of Grignard reagents (RMgX). The details of this highly complex mechanism especially of intermediates between Mg metal and MgII (RMgX) remain unknown until today. The same is true for the reaction of bulk magnesium with Group 15 halide compounds that give biradicaloid species. We investigate the reduction of P?Cl bonds with solutions of [MgIBr(NnBu3)]2 ( 1 ). The phosphanes [ClP(μ‐NTer)]2 ( 2 ) and (Me3Si)2N‐PCl2 ( 3 ), were chosen as they had successfully been reduced by Mg metal before. Furthermore, reactions of both 1 and Mg metal are compared with an MgI chelate complex L1Mg?MgL1 containing a strong Mg?Mg σ‐bond.  相似文献   

12.
Copper complexes generated in situ from CuCl2, alkyl Grignard reagents, and 1,3‐dienes play important roles as catalytic active species for the 1,2‐hydroalkylation of 1,3‐dienes by alkyl fluorides through C? F bond cleavage. The alkyl group is introduced to an internal carbon atom of the 1,3‐diene regioselectively, thus giving rise to the branched terminal alkene product.  相似文献   

13.
A sustainable D ‐glucosamine ligand is successfully introduced into iron‐catalysed C ? C cross‐coupling reactions for the first time. The Fe(acac)2/D ‐glucosamine·HCl/Et3N catalytic system was effective at 5 mol% loading in coupling reactions of Grignard reagents with organic bromides. Moderate to high efficiency was achieved with preserved stereochemistry when allyl (Csp3) or alkenyl (Csp2) bromides were coupled with phenylmagnesium (Csp2) or benzylmagnesium (Csp3) bromides. The catalytic system developed was also successfully applied for the novel and economic preparation of a Michael‐acceptor‐like starting material used in an alternative synthesis of the drug sitagliptin, a known blockbuster for the treatment of type II diabetes mellitus. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The first silicon analogues of carbonic (carboxylic) esters, the silanoic thio‐, seleno‐, and tellurosilylesters 3 (Si?S), 4 (Si?Se), and 5 (Si?Te), were prepared and isolated in crystalline form in high yield. These thermally robust compounds are easily accessible by direct reaction of the stable siloxysilylene L(Si:)OSi(H)L′ 2 (L=HC(CMe)2[N(aryl)2], L′=CH[(C?CH2)‐CMe][N(aryl)]2; aryl=2,6‐iPr2C6H3) with the respective elemental chalcogen. The novel compounds were fully characterized by methods including multinuclear NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Owing to intramolecular N→Si donor–acceptor support of the Si?X moieties (X=S, Se, Te), these compounds have a classical valence‐bond N+–Si–X? resonance betaine structure. At the same time, they also display a relatively strong nonclassical Si?X π‐bonding interaction between the chalcogen lone‐pair electrons (nπ donor orbitals) and two antibonding Si? N orbitals (σ*π acceptor orbitals mainly located at silicon), which was shown by IR and UV/Vis spectroscopy. Accordingly, the Si?X bonds in the chalcogenoesters are 7.4 ( 3 ), 6.7 ( 4 ), and 6.9 % ( 5 ) shorter than the corresponding Si? X single bonds and, thus, only a little longer than those in electronically less disturbed Si?X systems (“heavier” ketones).  相似文献   

15.
Laboratory X‐ray powder diffraction data were used to investigate the dehydration process of magnesium bromide hexahydrate in the temperature range 300 K ≤ T ≤ 420 K. By heating of the as synthesized hexahydrate (MgBr2 · 6H2O, observed in the temperature range 300 K ≤ T ≤ 349 K), three lower hydrates can be obtained in overlapped temperature regions: MgBr2 · 4H2O (332 K ≤ T ≤ 367 K), MgBr2 · 2H2O (361 K ≤ T ≤ 380 K) and MgBr2 · H2O (375 K ≤ T ≤ 390 K). Although the crystal structure of the hexahydrate was published almost eighty years ago, there are no data on the structures of the lower hydrates. The crystal structures are reported and are found to be isotypical with the structures of the respective chlorides. The structure of MgBr2 · 6H2O is characterized by discrete Mg(H2O)6 octahedra and is the only hydrate of this group that contains unbonded Br anions. MgBr2 · 4H2O is composed of discrete MgBr2(H2O)4 octahedra, and the structure was found to be disordered. The crystal structure of MgBr2 · 2H2O is formed by single chains of edge‐sharing MgBr4(H2O)2 octahedra, while in the case of MgBr2 · H2O double chains of edge‐shared MgBr5H2O are formed. By increasing the temperature, as expected, positive thermal expansion was evidenced. Thermal expansion coefficients, based on the changes of the unit cell parameters, were derived for the following hydrates: MgBr2 · 6H2O, MgBr2 · 4H2O, and MgBr2 · 2H2O.  相似文献   

16.
Si?F bond cleavage of fluoro‐silanes was achieved by transition‐metal complexes under mild and neutral conditions. The Iridium‐hydride complex [Ir(H)(CO)(PPh3)3] was found to readily break the Si?F bond of the diphosphine‐ difluorosilane {(o‐Ph2P)C6H4}2Si(F)2 to afford a silyl complex [{[o‐(iPh2P)C6H4]2(F)Si}Ir(CO)(PPh3)] and HF. Density functional theory calculations disclose a reaction mechanism in which a hypervalent silicon species with a dative Ir→Si interaction plays a crucial role. The Ir→Si interaction changes the character of the H on the Ir from hydridic to protic, and makes the F on Si more anionic, leading to the formation of Hδ+???Fδ? interaction. Then the Si?F and Ir?H bonds are readily broken to afford the silyl complex and HF through σ‐bond metathesis. Furthermore, the analogous rhodium complex [Rh(H)(CO)(PPh3)3] was found to promote the cleavage of the Si?F bond of the triphosphine‐monofluorosilane {(o‐Ph2P)C6H4}3Si(F) even at ambient temperature.  相似文献   

17.
The inverse‐micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4‐vinylbenzoic acid for their attachment onto TiO2 films of dye‐sensitized solar cells (DSSCs). The average diameter of the COOH‐functionalized Si (Si? COOH) Nps was 4.6(±1.7) nm. Depth profiling by secondary‐ion mass spectrometry revealed that the Si Nps were uniformly attached onto the TiO2 films. The number of RuII dye molecules adsorbed onto a TiO2 film that was treated with the Si? COOH Nps was 42 % higher than that on the untreated TiO2 film. As a result, DSSCs that incorporated the Si? COOH Nps exhibited higher short‐circuit photocurrent density and an overall energy‐conversion efficiency than the untreated DSSCs by 22 % and 27 %, respectively. This enhanced performance, mostly owing to the intramolecular charge‐transfer to TiO2 from the dye molecules that were anchored to the Si? COOH Nps, was confirmed by comparing the performance with two different RuII–bipyridine dyes (N719 and N749).  相似文献   

18.
E?Si transfer : Anionic compounds capable of transferring a silicon‐containing double bond are reviewed (see figure), particularly reagents with Si?Si moieties (Tip=2,4,6‐iPr3C6H2, M=Li, Na, K) and their applications towards main‐group and transition‐metal electrophiles, as well as their reactivity towards organic compounds. A few recently reported derivatives with Si?C (Ad=1‐adamantyl) and Si?P moieties are included for completeness.

  相似文献   


19.
New model of Si? H bond dissociation is proposed and tested in the cluster Si10H16 by the simulation approach that combines classic molecular dynamics method and the self‐consistent tight‐binding electronic and total energy calculation one. It is shown that the monohydride Si? H bond is unstable with respect to silicon dangling bond and bend‐bridge Si? H? Si bond formation when this cluster traps the single positive charge and that hydrogen migrates through a path involving rather rotation around the Si? Si bond than the center of this bond (the bond‐centered position). These results can be useful for understanding hydrogen‐related phenomena at surfaces, interfaces, and internal voids of various hydrogenated silicon systems: electronic devices, silicon solar cells, and nanocrystalline and porous silicon. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 351–359, 2003  相似文献   

20.
Presented herein is a mild, facile, and efficient iron‐catalyzed synthesis of substituted allenes from propargyl carboxylates and Grignard reagents. Only 1–5 mol % of the inexpensive and environmentally benign [Fe(acac)3] at ?20 °C was sufficient to afford a broad range of substituted allenes in excellent yields. The method tolerates a variety of functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号