首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Bioorthogonal late‐stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. In recent years, transition‐metal‐catalyzed C?H activation has emerged as an increasingly viable tool for peptide modification. Despite major accomplishments, these strategies largely rely on expensive palladium catalysts. We herein report an unprecedented cobalt(III)‐catalyzed peptide C?H activation, which enables the direct C?H functionalization of structurally complex peptides, and sets the stage for a multicatalytic C?H activation/alkene metathesis/hydrogenation strategy for the assembly of novel cyclic peptides.  相似文献   

2.
A previously elusive RuII‐catalyzed N?N bond‐based traceless C?H functionalization strategy is reported. An N‐amino (i.e., hydrazine) group is used for the directed C?H functionalization with either an alkyne or an alkene, affording an indole derivative or olefination product. The synthesis features a broad substrate scope, superior atom and step economy, as well as mild reaction conditions.  相似文献   

3.
A new and efficient synthesis of 8H‐benzo[e]phenanthro[1,10‐bc]silines from 2‐((2‐(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C?H/C?H coupling through a new mode of 1,4‐palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

4.
An unprecedented phosphine‐catalyzed remote β‐C? H functionalization of amine derivatives triggered by trifluoromethylation of an alkene with Togni’s reagent was disclosed. This reaction proceeded through the highly selective and concomitant activation of an unactivated alkene and the β‐C? H bond of an amine derivative, providing bistrifluoromethylated enamides in excellent yields with good regio‐, chemo‐, and stereoselectivity. Furthermore, the newly developed one‐pot protocol provides a facile and step‐economical access to valuable trisubstituted 5‐(trifluoromethyl)oxazoles. Mechanistic studies showed that this reaction may initiate with a novel phosphine‐catalyzed radical trifluoromethylation of unactivated alkene via a phosphorus radical cation.  相似文献   

5.
Transition‐metal‐catalyzed C?H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late‐stage peptide macrocyclization methods by palladium‐catalyzed site‐selective C(sp2)?H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp–alkene crosslinks.  相似文献   

6.
This study describes a new rhodium(III)‐catalyzed [3+2] annulation of 5‐aryl‐2,3‐dihydro‐1H‐pyrroles with internal alkynes using a Cu(OAc)2 oxidant for building a spirocyclic ring system, which includes the functionalization of an aryl C(sp2)? H bond and addition/protonolysis of an alkene C?C bond. This method is applicable to a wide range of 5‐aryl‐2,3‐dihydro‐1H‐pyrroles and internal alkynes, and results in the assembly of the spiro[indene‐1,2′‐pyrrolidine] architectures in good yields with excellent regioselectivities.  相似文献   

7.
Hydrogen Bonds with Cyanide Ions? The Structures of 1,3‐Diisopropyl‐4,5‐dimethylimidazolium Cyanide and 1‐Isopropyl‐3,4,5‐trimethylimidazolium Cyanide 1,3‐Diisopropyl‐4,5‐dimethylimidazolium cyanide ( 2a ) and 1‐isopropyl‐3,4,5‐trimethylimidazolium cyanide ( 2b ) are obtained from the reaction of the corresponding 2,3‐dihydrodimethylimidazol‐2‐ylidenes ( 1 ) and hydrogen cyanide in excellent yield. Their crystal structure analyses reveal the presence of ion pairs linked by hydrogen bonds. The crystal structure analysis of 2a reveals a near colinear orientation of the C(1)‐H bond axis and the cyanide ion while in 2b this orientation is perpendicular. In both cases, the interionic distances are in the expected range for hydrogen bonds. Ab‐initio calculations of the total energy of the salts 2 indicate small differences in energy between the colinear and perpendicular orientation of the ions as well as between the colinear C‐H···C‐N and C‐H···N‐C orientations. The comparison of calculated and measured 13C and 15N NMR chemical shifts does not allow the distinction between the possible orientations.  相似文献   

8.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

9.
Manganese‐catalyzed C? H functionalization reactions of ketimines set the stage for the expedient synthesis of cis‐β‐amino acid esters through site‐ and regioselective alkene annulations. The organometallic C? H activation occurred efficiently with high functional group tolerance, delivering densely functionalized β‐amino acid derivatives with ample scope.  相似文献   

10.
Quaternary ammonium salts were synthesized in moderate to good yields through double oxidative C?H bond activation on azobenzenes. The mechanism of the highly regioselective reaction of 2‐azobiaryls with alkenes to give orange‐red‐fluorescent cinnolino[2,3‐f]phenanthridin‐9‐ium salts and 15H‐cinnolino[2,3‐f]phenanthridin‐9‐ium‐10‐ide is proposed to involve ortho C?H olefination of the 2‐azobiaryl compound with the alkene, intramolecular aza‐Michael addition, concerted metalation–deprotonation (CMD), reductive elimination, and oxidation.  相似文献   

11.
The alkene transfer hydrogenation (TH) of a variety of alkenes has been achieved with simple AeN′′2 catalysts [Ae=Ca, Sr, Ba; N′′=N(SiMe3)2] using 1,4‐cyclohexadiene (1,4‐CHD) as a H source. Reaction of 1,4‐CHD with AeN′′2 gave benzene, N′′H, and the metal hydride species N′′AeH (or aggregates thereof), which is a catalyst for alkene hydrogenation. BaN′′2 is by far the most active catalyst. Hydrogenation of activated C=C bonds (e.g. styrene) proceeded at room temperature without polymer formation. Unactivated (isolated) C=C bonds (e.g. 1‐hexene) needed a higher temperature (120 °C) but proceeded without double‐bond isomerization. The ligands fully control the course of the catalytic reaction, which can be: 1) alkene TH, 2) 1,4‐CHD dehydrogenation, or 3) alkene polymerization. DFT calculations support formation of a metal hydride species by deprotonation of 1,4‐CHD followed by H transfer. Convenient access to larger quantities of BaN′′2, its high activity and selectivity, and the many advantages of TH make this a simple but attractive procedure for alkene hydrogenation.  相似文献   

12.
Described is the development of a new class of bis(cyclometalated) ruthenium(II) catalyst precursors for C? C coupling reactions between alkene and alkyne substrates. The complex [(cod)Ru(3‐methallyl)2] reacts with benzophenone imine or benzophenone in a 1:2 ratio to form bis(cyclometalated) ruthenium(II) complexes ( 1 ). The imine‐ligated complex 1 a promoted room‐temperature coupling between acrylic esters and amides with internal alkynes to form 1,3‐diene products. A proposed catalytic cycle involves C? C bond formation by oxidative cyclization, β‐hydride elimination, and C? H bond reductive elimination. This RuII/RuIV pathway is consistent with the observed catalytic reactivity of 1 a for mild tail‐to‐tail methyl acrylate dimerization and for cyclobutene formation by [2+2] norbornene/alkyne cycloaddition.  相似文献   

13.
Herein, we describe an intermolecular direct branched‐selective α‐alkylation of cyclic ketones with simple alkenes as the alkylation agents. Through an enamine‐transition metal cooperative catalysis mode, the α‐alkylation is realized in an atom‐ and step‐economic manner with excellent branched selectivity for preparing β‐branched ketones. Employment of a pair of bulky Brønsted acid and base as additives is responsible for enhanced efficiency. Promising enantioselectivity (74 % ee) has been obtained. Experimental and computational mechanistic studies suggest that a pathway through alkene migratory insertion into the Ir?C bond followed by C?H reductive elimination is involved for the high branched selectivity.  相似文献   

14.
The insertion of an unsaturated ligand into a M? C or M? H bond proceeds through migratory insertion, a fundamental organometallic reaction. Recent literature documents evidence of the migratory insertion of alkenes into an M? O and M? N bonds for alkene alkoxylation and alkene amination reactions, respectively. Herein we provide an overview of the literature and a perspective on how these recent experiments relate to classic experiments on C? O and C? N bond formation with alkene complexes of the late transition metals.  相似文献   

15.
The silica‐supported azazirconacyclopropane ?SiOZr(HNMe2)(η2‐NMeCH2)(NMe2) ( 1 ) leads exclusively under hydrogenolysis conditions (H2, 150 °C) to the single‐site monopodal monohydride silica‐supported zirconium species ?SiOZr(HNMe2)(NMe2)2H ( 2 ). Reactivity studies by contacting compound 2 with ethylene, hydrogen/ethylene, propene, or hydrogen/propene, at a temperature of 200 °C revealed alkene hydrogenation.  相似文献   

16.
This Minireview highlights the redox and non‐innocent behavior of NOx ligands (x=1, 2, or 3) in selected Pd‐mediated processes, for example, alkene and aromatic oxidation processes. A focus is placed on mechanistic understanding and linking recent transformations, such as C? H bond activation/functionalization and Wacker oxidation, with previous work on the functionalization of aromatics and alkenes by PdII salts.  相似文献   

17.
Intermolecular C?H alkylation of simple arenes in the presence of an iron catalyst has been achieved in a cascade manner with an aminative cyclization triggered by N?O bond cleavage of an alkene‐tethered oxime ester. Various arenes, including electron‐rich and electron‐poor arenes, and heteroarenes can be employed in the reaction system. Regioselectivity and radical trapping experiments support the involvement of alkyl radical species, which undergo a homolytic aromatic substitution (HAS) to afford the arylation products.  相似文献   

18.
Highly enantioselective nickel‐catalyzed alkene endo‐hydroarylations were accomplished with full selectivity by organometallic C?H activation. The asymmetric assembly of chiral six‐membered scaffolds proved viable in the absence of pyrophoric organoaluminum reagents within an unprecedented nickel/JoSPOphos manifold.  相似文献   

19.
An asymmetric unactivated alkene/C? H bond difunctionalization reaction for the concomitant construction of C? CF3 and C? O bonds was realized by using a Cu/Brønsted acid cooperative catalytic system, thus providing facile access to valuable chiral CF3‐containing N,O‐aminals with excellent regio‐, chemo‐, and enantioselectivity. Mechanistic studies revealed that this reaction may proceed by an unprecedented 1,5‐hydride shift involving activation of unactivated alkenes and a radical trifluoromethylation to initiate subsequent enantioselective functionalization of C? H bonds. Control experiments also suggested that chiral Brønsted acid plays multiple roles and not only controls the stereoselectivity but also increases the reaction rate through activation of Togni’s reagent.  相似文献   

20.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号