首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)(1)   总被引:1,自引:0,他引:1  
A new, efficient preparation has been devised for potassium ferrate(VI) (K(2)FeO(4)). The ability of this high-valent iron salt for oxidizing organic substrates in nonaqueous media was studied. Using benzyl alcohol as a model, the catalytic activity of a wide range of microporous adsorbents was ascertained. Among numerous solid supports of the aluminosilicate type, the K10 montmorillonite clay was found to be best at achieving quantitative formation of benzaldehyde, without any overoxidation to benzoic acid. The roles of the various parameters (reaction time and temperature, nature of the solvent, method of preparation of the solid reagent) were investigated. The evidence points to a polar reaction mechanism. The ensuing procedure was applied successfully, at room temperature, to oxidation of a series of alcohols to aldehydes and ketones, to oxidative coupling of thiols to disulfides, and to oxidation of nitrogen derivatives. At 75 degrees C, the reagent has the capability of oxidizing both activated and nonactivated hydrocarbons. Toluene is turned into benzyl alcohol (and benzaldehyde). Cycloalkanes are also oxidized, in significant (30-40%) yields, to the respective cycloalkanols (and cycloalkanones). Thus, potassium ferrate, used in conjunction with an appropriate heterogeneous catalyst, is a strong and environmentally friendly oxidant.  相似文献   

2.
Polymer brushes present a unique architecture for tailoring surface functionalities due to their distinctive physicochemical properties. However, the polymerization chemistries used to grow brushes place limitations on the monomers that can be grown directly from the surface. Several forms of click chemistry have previously been used to modify polymer brushes by postpolymerization modification with high efficiency, however, it is usually difficult to include the unprotected moieties in the original monomer. We present the use of a new form of click chemistry known as SuFEx (sulfur(VI) fluoride exchange), which allows a silyl ether to be rapidly and quantitatively clicked to a polymer brush grown by free‐radical polymerization containing native ‐SO2F groups with rapid pseudo‐first‐order rates as high as 0.04 s?1. Furthermore, we demonstrate the use of SuFEx to facilely add a variety of other chemical functional groups to brush substrates that have highly useful and orthogonal reactivity, including alkynes, thiols, and dienes.  相似文献   

3.
Long Xu  Jiajia Dong 《中国化学》2020,38(4):414-419
The article herein briefly introduces the story of the birth of click chemistry and its evolution after that. A new angle to interpret click reactions was proposed using the “reactivity‐availability‐functionality” trilogy. CuAAC (Copper‐catalyzed azide‐alkyne cycloaddition), the most popular click reaction by far, was revisited along with the thiol‐ene, metal‐free AAC, SuFEx (Sulfur(VI) fluoride exchange) and the lately discovered diazotransfer process. By encountering more and more near‐perfect reactions, click chemistry is evolving and expanding on the fringe of the chemistry and different scientific disciplines, destination unknown.   相似文献   

4.
Multiresponsive materials that display predefined photoluminescence color changes upon exposure to different stimuli are attractive candidates for advanced sensing schemes. Herein, we report a cyano‐substituted oligo(p‐phenylene vinylene) (cyano‐OPV) derivative that forms five different solvent‐free solid‐state molecular assemblies, luminescence properties of which change upon thermal and mechanical stimulation. Single‐crystal X‐ray structural analysis suggested that tolyl groups introduced at the termini of solubilizing side‐chains of the cyano‐OPV play a pivotal role in its solid‐state arrangement. Viewed more broadly, this report shows that the introduction of competing intermolecular interactions into excimer‐forming chromophores is a promising design strategy for multicolored thermo‐ and mechanoresponsive luminescent materials.  相似文献   

5.
Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite‐free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg?1) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx. Herein, we demonstrate the first reversible Al/S battery in ionic‐liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid‐state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid‐state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.  相似文献   

6.
In this work, the authors attempt to interpret the visible, infrared and Raman spectra of ferrate(VI) by means of theoretical physical-inorganic chemistry and historical highlights in this field of interest. In addition, the sacrificial decomposition of ferrate(VI) during water treatment will also be discussed together with a brief mention of how Rayleigh scattering caused by the decomposition of FeVIO42− may render absorbance readings erroneous. This work is not a compendium of all the instrumental methods of analysis which have been deployed to identify ferrate(VI) or to study its plethora of reactions, but mention will be made of the relevant techniques (e.g., Mössbauer Spectroscopy amongst others) which support and advance this overall discourse at appropriate junctures, without undue elaboration on the foundational physics of these techniques.  相似文献   

7.
It is well established that graphene oxide can be prepared by the oxidation of graphite using permanganate or chlorate in an acidic environment. Recently, however, the synthesis of graphene oxide using potassium ferrate(VI) ions has been reported. Herein, we critically replicate and evaluate this new ferrate(VI) oxidation method. In addition, we test the use of potassium ferrate(VI) for the synthesis of graphene oxide under various experimental routes. The synthesized materials are analyzed by a number of analytical methods in order to confirm or disprove the possibility of synthesizing graphene oxide by the ferrate(VI) oxidation route. Our results confirm the unsuitability of using ferrate(VI) for the oxidation of graphite on graphene oxide because of its high instability in an acidic environment and low oxidation power in neutral and alkaline environments.  相似文献   

8.
Alcohol oxidation by ferrate (FeO(4)(2)(-)) in water is investigated from B3LYP density functional theory calculations in the framework of polarizable continuum model. The oxidizing power of three species, nonprotonated, monoprotonated, and diprotonated ferrates, was evaluated. The LUMO energy levels of nonprotonated and monoprotonated ferrates are greatly reduced by solvent effects, and as a result the oxidizing power of these two species is increased enough to effectively mediate a hydrogen-atom abstraction from the C-H and O-H bonds of methanol. The oxidizing power of these oxidants increases in the order nonprotonated ferrate < monoprotonated ferrate < diprotonated ferrate. The reaction pathway is initiated by C-H bond activation, followed by the formation of a hydroxymethyl radical intermediate or an organometallic intermediate with an Fe-C bond. Kinetic aspects of this reaction are analyzed from calculated energy profiles and experimentally known pK(a) values. The pH dependence of this reaction in water is explained well in terms of a multioxidant scheme.  相似文献   

9.
Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox‐modulating compounds able to utilize such pre‐existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium‐ and tellurium‐based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.  相似文献   

10.
Mechanochemical solvent‐free reactions by milling, grinding or other types of mechanical action have emerged as a viable alternative to solution chemistry. Mechanochemistry offers not only a possibility to eliminate the need for bulk solvent use, and reduce the generation of waste, but it also unlocks the door to a different reaction environment in which synthetic strategies, reactions and molecules previously not accessible in solution, can be achieved. This Minireview examines the potential of mechanochemistry in chemical and materials synthesis, by providing a cross‐section of the recent developments in using ball milling for the formation of molecules and materials based on covalent and coordination bonds.  相似文献   

11.
All reported attempts to synthesize the tert‐butyl‐substituted adamantoid phosph(III)azane P4(NtBu)6 have failed, leading to the classification of this molecule as inaccessible and a literature example of steric control in chemistry of phosphorus‐nitrogen compounds. We now demonstrate that this structure is readily accessible by a solvent‐free mechanochemical milling approach, highlighting the importance of mechanochemical reaction environments in evaluating chemical reactivity.  相似文献   

12.
Calcium ferrate(VI) powders were synthesized from potassium ferrate(VI), and characterized by titration analysis, elemental analyzer, SEM, XRD, IR, TG and DSC. The results showed that the synthesized sample mainly consists of calcium ferrate(VI), and calcium ferrate(VI) may exist as CaFeO4 · 2H2O with a highest obtained purity of 74.9%. The relatively higher Fe(III) impurity and crystalloid water might be responsible for the poor stability of the calcium ferrate(VI) sample. The results of galvanostatic discharge experiments indicated that the calcium ferrate (VI) sample displays better intrinsic rate discharge capability and larger discharge capacity at lower temperatures (⩽15 °C).  相似文献   

13.
Acylation reactions are ubiquitous in the synthesis of natural products and biologically active compounds. Unfortunately, these reactions often require the use of large quantities of volatile and/or toxic solvents, either for the reaction, purification or isolation of the products. Herein we describe and discuss the possibility of completely eliminating the use of organic solvents for the synthesis, purification and isolation of products resulting from the acylation of amines and other nucleophiles. Thus, utilisation of N,N′‐carbonyldiimidazole (CDI) allows efficient coupling between carboxylic acids and various nucleophiles under solvent‐free mechanical agitation, and water‐assisted grinding enables both the purification and isolation of pure products. Critical parameters such as the physical state and water solubility of the products, milling material, type of agitation (vibratory or planetary) as well as contamination from wear are analysed and discussed. In addition, original organic‐solvent‐free conditions are proposed to overcome the limitations of this approach. The calculations of various green metrics are included, highlighting the particularly low environmental impact of this strategy.  相似文献   

14.
Vascular endothelial growth factor type protein (VEGF), a potent angiogenic effector molecule, was successfully covalently immobilized onto the surfaces of the resorbable polymers poly(L‐lactic acid) (PLLA) and poly(ε‐caprolactone) (PCL) through a three‐step strategy. The surfaces were first covalently grafted with poly(acrylic acid) using non‐destructive and solvent free vapor‐phase grafting. A diamine spacer was coupled to the carboxylic acid pendant groups on the graft chains using EDC/NHS chemistry and VEGF was finally covalently attached to the amine linkers. The chemistry and topography of the modified substrates were quantitatively and qualitatively verified with XPS, ATR‐FTIR, UV–VIS, SEM, and ELISA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
“Click” chemistry represents one of the most powerful approaches for linking molecules in chemistry and materials science. Triggering this reaction by mechanical force would enable site‐ and stress‐specific “click” reactions—a hitherto unreported observation. We introduce the design and realization of a homogeneous Cu catalyst able to activate through mechanical force when attached to suitable polymer chains, acting as a lever to transmit the force to the central catalytic system. Activation of the subsequent copper‐catalyzed “click” reaction (CuAAC) is achieved either by ultrasonication or mechanical pressing of a polymeric material, using a fluorogenic dye to detect the activation of the catalyst. Based on an N‐heterocyclic copper(I) carbene with attached polymeric chains of different flexibility, the force is transmitted to the central catalyst, thereby activating a CuAAC in solution and in the solid state.  相似文献   

16.
The reaction thermodynamics of the 1,2‐dimethoxyethane (DME), a model solvent molecule commonly used in electrolytes for Li?O2 rechargeable batteries, has been studied by first‐principles methods to predict its degradation processes in highly oxidizing environments. In particular, the reactivity of DME towards the superoxide anion O2? in oxygen‐poor or oxygen‐rich environments is studied by density functional calculations. Solvation effects are considered by employing a self‐consistent reaction field in a continuum solvation model. The degradation of DME occurs through competitive thermodynamically driven reaction paths that end with the formation of partially oxidized final products such as formaldehyde and methoxyethene in oxygen‐poor environments and methyl oxalate, methyl formate, 1‐formate methyl acetate, methoxy ethanoic methanoic anhydride, and ethylene glycol diformate in oxygen‐rich environments. This chemical reactivity indirectly behaves as an electroactive parasitic process and therefore wastes part of the charge exchanged in Li?O2 cells upon discharge. This study is the first complete rationale to be reported about the degradation chemistry of DME due to direct interaction with O2?/O2 molecules. These findings pave the way for a rational development of new solvent molecules for Li?O2 electrolytes.  相似文献   

17.
The kinetics and mechanism for the oxidation of phosphite, hypophosphite, phenylphosphite, and trimethylphosphite by ferrate(VI) are reported. Hypophosphite is rapidly oxidized to phosphite which is slowly oxidized to phosphate, trimethylphosphite is oxidized to trimethylphosphate, and phenylphosphite is oxidized phenylphosphate. (18)O induced shifts of the (31)P NMR signals support oxygen transfer from ferrate(VI) to the phosphorus center during the oxidation process. Deuteration of the hydridic hydrogens in hypophosphite and phosphite resulted in significant kinetic isotope effects on the reaction rates. It is proposed that ferrate(VI) acts as a two-electron oxidant in conjunction with oxide transfer coupled with phosphorus hydrogen bond breaking for phosphite and hypophosphite and simple oxygen transfer for trimethylphosphite and phenylphosphite.  相似文献   

18.
Noble metals are valued, critical elements whose chemical activation or recycling is challenging, and traditionally requires high temperatures, strong acids or bases, or aggressive complexation agents. By using elementary palladium and gold, demonstrated here is the use of mechanochemistry for noble‐metal activation and recycling by mild, clean, solvent‐free, and room‐temperature chemistry. The process leads to direct, efficient, one‐pot conversion of the metals, including spent catalysts, into either simple water‐soluble salts or metal–organic catalysts.  相似文献   

19.
20.
We report that the photodeoxygenation of 1,2-benzodiphenylene sulfoxide, 1, generates an intermediate capable of oxidizing the solvent benzene to phenol. The reactivity of the intermediate was probed with various substrates (2-methylbutane, chloride ion, and para-substituted aryl sulfides). The intermediate produced in the sulfoxide photodeoxygenation displays an electrophilic oxidation chemistry. Our data on 1 contrast with the behavior of hydroxyl radical but resemble the chemistry observed for gas-phase atomic oxygen [O((3)P)] and for solution-phase photodeoxygenations of dibenzothiophene sulfoxide, 3, and pyridine N-oxide, 5. Correlations are made between the ionization potential of the acceptor molecules and the logarithm of the relative rate constants in order to advance the idea that the oxidizing agent of the title reaction may be solution-phase O((3)P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号