首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The N‐centered radical directed remote C?H bond functionalization via hydrogen‐atom‐transfer at distant sites has developed as an enormous potential tool for the organic synthetic chemists. Unactivated and remote secondary and tertiary, as well as selected primary C?H bonds, can be utilized for functionalization by following these methodologies. The synthesis of the heterocyclic scaffolds provides them extra attention for the modern days′ developments in this field of unactivated remote C?H bonds functionalizations.  相似文献   

2.
Copper‐catalyzed oxidative couplings of N‐allylbenzamides for C?N and C?O bond formations have been developed through C?H bond functionalization. To demonstrate the utility of this approach, it was applied to the synthesis of β‐aminoimides and imides. To the best of our knowledge, these are the first examples in which different classes of N‐containing compounds have been directly prepared from the readily available N‐allylbenzamides using an inexpensive catalyst/oxidant/base (CuSO4/TBHP/Cs2CO3) system.  相似文献   

3.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

4.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

5.
《中国化学》2018,36(8):692-697
Cross‐coupling reactions have developed widely and provided a powerful means to synthesize a variety of compounds in each chemical field. The compounds which have C—H bonds are widespread in fossil fuels, chemical raw materials, biologically active molecules, etc. Using these readily‐ available substances as substrates is high atom‐ and step‐economy for cross‐coupling reactions. Over the past decades, our research group focused on finding and developing new strategies for C—H functionalization. Compared with classical C—H activation methods, for example, C—H bonds are deprotonated by strong base or converted into C—M bonds, oxidation‐induced C—H functionalization would be another pathway for C—H bond activation. This perspective shows a brief introduction of our recent works in this oxidation‐induced C—H functionalization. We categorized this approach of these C—H bond activations by the key intermediates, radical cations, radicals and cations.  相似文献   

6.
Predictability is a key requirement to encompass late‐stage C?H functionalization in synthetic routes. However, prediction (and control) of reaction selectivity is usually challenging, especially for complex substrate structures and elusive transformations such as remote C(sp3)?H oxidation, as it requires distinguishing a specific C?H bond from many others with similar reactivity. Developed here is a strategy for predictable, remote C?H oxidation that entails substrate binding to a supramolecular Mn or Fe catalyst followed by elucidation of the conformation of the host‐guest adduct by NMR analysis. These analyses indicate which remote C?H bonds are suitably oriented for the oxidation before carrying out the reaction, enabling prediction of site selectivity. This strategy was applied to late‐stage C(sp3)?H oxidation of amino‐steroids at C15 (or C16) positions, with a selectivity tunable by modification of catalyst chirality and metal.  相似文献   

7.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

8.
A highly stereoselective three‐component C(sp2)?H bond addition across alkene and polarized π‐bonds is reported for which CoIII catalysis was shown to be much more effective than RhIII. The reaction proceeds at ambient temperature with both aryl and alkyl enones employed as efficient coupling partners. Moreover, the reaction exhibits extremely broad scope with respect to the aldehyde input; electron rich and poor aromatic, alkenyl, and branched and unbranched alkyl aldehydes all couple in good yield and with high diastereoselectivity. Multiple directing groups participate in this transformation, including pyrazole, pyridine, and imine functional groups. Both aromatic and alkenyl C(sp2)?H bonds undergo the three‐component addition cascade, and the alkenyl addition product can readily be converted into diastereomerically pure five‐membered lactones. Additionally, the first asymmetric reactions with CoIII‐catalyzed C?H functionalization are demonstrated with three‐component C?H bond addition cascades employing N‐tert‐butanesulfinyl imines. These examples represent the first transition metal catalyzed C?H bond additions to N‐tert‐butanesulfinyl imines, which are versatile and extensively used intermediates for the asymmetric synthesis of amines.  相似文献   

9.
Regioselective incorporation of a particular functional group into aliphatic sites by direct activation of unreactive C?H bonds is of great synthetic value. Despite advances in radical‐mediated functionalization of C(sp3)?H bonds by a hydrogen‐atom transfer process, the site‐selective vinylation of remote C(sp3)?H bonds still remains underexplored. Reported herein is a new protocol for the regioselective vinylation of unactivated C(sp3)?H bonds. The remote C(sp3)?H activation is promoted by a C‐centered radical instead of the commonly used N and O radicals. The reaction possesses high product diversity and synthetic efficiency, furnishing a plethora of synthetically valuable E alkenes bearing tri‐/di‐/mono‐fluoromethyl and perfluoroalkyl groups.  相似文献   

10.
The selective transformation of C?H bonds is one of the most desirable approaches to creating complexity from simple building blocks. Several directing groups are efficient in controlling the regioselectivity of catalytic C?H bond functionalizations. Among them, carboxylic acids are particularly advantageous, since they are widely available in great structural diversity and at low cost. The carboxylate directing groups can be tracelessly cleaved or may serve as the anchor point for further functionalization through decarboxylative couplings. This Minireview summarizes the substantial progress made in the last few years in the development of reactions in which carboxylate groups direct C?H bond functionalizations with formation of C?C, C?O, C?N, or C?halogen bonds at specific positions. It is divided into sections on C?C, C?O, C?N, and C?halogen bond formation, each of which is subdivided by reactions and product classes. Particular emphasis is placed on methods that enable multiple derivatizations by combining carboxylate‐directed C?H functionalization with decarboxylative couplings.  相似文献   

11.
A redox‐neutral, light‐mediated functionalization of unactivated C(sp3)−H bonds via iminyl radicals is presented here. A 1,5‐H transfer followed by the functionalization of a C(sp2)−H bond takes place in aqueous media producing a variety of elaborated fused ketones. Mechanistic investigations have revealed 1,5‐H transfer as the reversible, rate‐determining step in this transformation. Divergent scaffolds are also accessible via C(sp3)−N bond formation upon a careful choice of the reaction additives.  相似文献   

12.
Distal C?H bond functionalization of heterocycles remained extremely challenging with covalently attached directing groups (DG). Lack of proper site for DG attachment and inherent catalyst poisoning by heterocycles demand alternate routes for site selective functionalization of their distal C?H bonds. Utilizing non‐productive coordinating property to hold the heterocycle into the cavity of a template system in a host–guest manner, we report distal C?H alkylation (C‐5 of quinoline and thiazole, C‐7 of benzothiazole and benzoxazole) of heterocycles. Upon complexation with heterocyclic substrate, nitrile DG in template directs the metal catalyst towards close vicinity of the specific distal C?H bond of the heterocycles. Our hypothesized pathway has been supported by various X‐ray crystallographically characterized intermediates.  相似文献   

13.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C?H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)?H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)?H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl?. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.  相似文献   

14.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

15.
A simple and efficient nitrile‐directed meta‐C?H olefination, acetoxylation, and iodination of biaryl compounds is reported. Compared to the previous approach of installing a complex U‐shaped template to achieve a molecular U‐turn and assemble the large‐sized cyclophane transition state for the remote C?H activation, a synthetically useful phenyl nitrile functional group could also direct remote meta‐C?H activation. This reaction provides a useful method for the modification of biaryl compounds because the nitrile group can be readily converted to amines, acids, amides, or other heterocycles. Notably, the remote meta‐selectivity of biphenylnitriles could not be expected from previous results with a macrocyclophane nitrile template. DFT computational studies show that a ligand‐containing Pd–Ag heterodimeric transition state (TS) favors the desired remote meta‐selectivity. Control experiments demonstrate the directing effect of the nitrile group and exclude the possibility of non‐directed meta‐C?H activation. Substituted 2‐pyridone ligands were found to be key in assisting the cleavage of the meta‐C?H bond in the concerted metalation–deprotonation (CMD) process.  相似文献   

16.
Regio‐ and stereoselective distal allylic/benzylic C?H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C?H bonds even in the presence of electronically preferred C?H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4 is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4 works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstituted l ‐proline scaffold.  相似文献   

17.
Amide bond formation is one of the most important reactions in organic chemistry because of the widespread presence of amides in pharmaceuticals and biologically active compounds. Existing methods for amides synthesis are reaching their inherent limits. Described herein is a novel rhodium‐catalyzed three‐component reaction to synthesize amides from organic azides, carbon monoxide, and (hetero)arenes via nitrene‐intermediates and direct C?H functionalization. Notably, the reaction proceeds in an intermolecular fashion with N2 as the only by‐product, and either directing groups nor additives are required. The computational and mechanistic studies show that the amides are formed via a key Rh‐nitrene intermediate.  相似文献   

18.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

19.
The Rh‐catalyzed direct carboxylation of alkenyl C?H bonds was achieved by using pyrazole as a removable directing group. In the presence of 5 mol% RhCl3 ? 3H2O, 6 mol% P(Mes)3, and 2 equiv. of AlMe2(OMe), the alkenyl C?H bond of various alkenylpyrazoles was directly carboxylated in good yields under CO2 atmosphere. Furthermore, several useful transformations of the pyrazole moiety of the product were achieved to afford synthetically useful carboxylic acid derivatives in good yields.  相似文献   

20.
A mixed directing‐group strategy for inexpensive [Co(acac)3]‐catalyzed oxidative C?H/C?H bond arylation of unactivated arenes has been disclosed. This strategy enables the arylation of a wide range of benzamide and arylpyridines effectively to afford novel bifunctionalized biaryls, which are difficult to achieve by common synthetic routes. Two different pathways, namely, a single‐electron‐transmetalation process (8‐aminoquinoline‐directed) and a concerted metalation–deprotonation process (pyridine‐directed), were involved to activate two different inert aromatic C?H bonds. Moreover, the aryl radicals have been trapped by 2,6‐di‐tert‐butyl‐4‐methylphenol to form benzylated products. This unique strategy should be useful in the design of other arene C?H/C?H cross‐couplings as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号