首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Developing a monomeric form of an avidin‐like protein with highly stable biotin binding properties has been a major challenge in biotin‐avidin linking technology. Here we report a monomeric avidin‐like protein—enhanced monoavidin—with off‐rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head‐group‐biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24‐meric avidin probe by fusing eMA to a multimeric cage protein. The 24‐meric avidin and eMA were utilized to demonstrate how artificial clustering of cell‐surface proteins greatly enhances the internalization rates of assembled proteins on live cells.  相似文献   

2.
Avidin functional affinity electrophoresis (AFAEP) is substituted for an avidin affinity column (AAC) to capture biotinylated peptides in the Isotope‐Coded Affinity Tagging (ICAT) technique which is a valuable tool in quantitative proteomics. In this new technique, the AFAEP‐captured ICAT‐labeled biotinylated peptides are extracted with the biotin tag intact from the polyacrylamide gel piece with aqueous 95% formamide (pH 8.2) at 65 °C for 20 min, and then detected by a matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometer. Bovine serum albumin (BSA) and the 12C‐ and 13C‐ICAT reagents are used to test this AFAEP‐ICAT technique. The results show that both AFAEP and AAC methods provide quantitative information of the relative amounts of 12C‐ and 13C‐ICAT‐labeled biotinylated tryptic peptides of BSA in a sample. Compared with AAC, the AFAEP is cheaper to perform, more stringent in capturing the biotinylated peptides, and capable of simultaneously processing multiple samples.  相似文献   

3.
4.
Because the local microstructure plays a pivotal role for many biological functions, a wide range of methods have been developed to design precisely engineered substrates for both fundamental biological studies and biotechnological applications. However, these techniques have been by‐and‐large limited to flat surfaces. Herein, we use electrohydrodynamic co‐spinning to prepare biodegradable three‐dimensional fiber scaffolds with precisely engineered, micrometre‐scale patterns, wherein each fiber is comprised of two distinguishable compartments. When bicompartmental fiber scaffolds are modified via spatially controlled peptide immobilization, highly selective cell guidance at spatial resolutions (<10 µm), so far exclusively reserved for flat substrates, is achieved. Microstructured fiber scaffolds may have utility for a range of biotechnological applications including tissue engineering or cell‐based assays.

  相似文献   


5.
Functional materials composed of proteins have attracted much interest owing to the inherent and diverse functionality of proteins. However, establishing general techniques for assembling proteins into nanomaterials is challenging owing to the complex physicochemical nature and potential denaturation of proteins. Here, a simple, versatile strategy is introduced to fabricate functional protein assemblies through the interfacial assembly of proteins and polyphenols (e.g., tannic acid) on various substrates (organic, inorganic, and biological). The dominant interactions (hydrogen‐bonding, hydrophobic, and ionic) between the proteins and tannic acid were elucidated; most proteins undergo multiple noncovalent stabilizing interactions with polyphenols, which can be used to engineer responsiveness into the assemblies. The proteins retain their structure and function within the assemblies, thereby enabling their use in various applications (e.g., catalysis, fluorescence imaging, and cell targeting).  相似文献   

6.
Two chondrogenic factors, Dex and TGF‐β1, were incorporated into PLGA scaffolds and their chondrogenic potential was evaluated. The Dex‐loaded PLGA scaffold was grafted with AA and heparin, the heparin‐immobilized one was then reacted with TGF‐β1, yielding a PLGA/Dex‐TGF (PLGA/D/T) scaffold. The scaffolds were seeded with rabbit MSCs and cultured for 4 weeks. The results show that the scaffolds including chondrogenic factors strongly upregulated the expression of cartilage‐specific genes and clearly displayed type‐II collagen immunofluorescence. The functionalized PLGA scaffolds could provide an appropriate niche for chondrogenic differentiation of MSC without a constant medium supply of Dex and TGF‐β1.

  相似文献   


7.
8.
9.
A series of metallo‐supramolecular ring‐in‐ring structures was generated by assembling CdII ions and the multivalent terpyridine ligands ( L1‐3 ) composed of one 60°‐bent and two 120°‐bent bis(terpyridine)s with varying alkyl linker lengths. The mechanistic study for the self‐assembly process excluded an entropically templated pathway and showed that the intramolecularly complexed species is the key intermediate leading to ring‐in‐ring formation. The next‐generation superstructure, a spiderweb, was produced in quantitative yield using the elongated decakis(terpyridine) ligand ( L5 ).  相似文献   

10.
Concerted functioning of lectins and carbohydrate‐processing enzymes, mainly glycosidases, is essential in maintaining life. It was commonly assumed that the mechanisms by which each class of protein recognizes their cognate sugar partners are intrinsically different: multivalency is a characteristic feature of carbohydrate–lectin interactions, whereas glycosidases bind to their substrates or substrate‐analogue inhibitors in monovalent form. Recent observations on the glycosidase inhibitory potential of multivalent glycomimetics have questioned this paradigm and led to postulate an inhibitory multivalent effect. Here the mechanisms at the origin of this phenomenon have been investigated. A D ‐gluco‐configured sp2‐iminosugar glycomimetic motif, namely 1‐amino‐5N,6O‐oxomethylydenenojirimycin (1N‐ONJ), behaving, simultaneously, as a ligand of peanut agglutinin (PNA) lectin and as an inhibitor of several glycosidases, has been identified. Both the 1N‐ONJ–lectin‐ and 1N‐ONJ–glycosidase‐recognition processes have been found to be sensitive to multivalency, which has been exploited in the design of a lectin–glycosidase competitive assay to explore the implication of catalytic and non‐glycone sites in enzyme binding. A set of isotropic dodecavalent C60‐fullerene–sp2‐iminosugar balls incorporating matching or mismatching motifs towards several glycosidases (inhitopes) was synthesized for that purpose, thereby preventing differences in binding modes arising from orientational preferences. The data supports that: 1) multivalency allows modulating the affinity and selectivity of a given inhitope towards glycosidases; 2) multivalent presentation can switch on the inhibitory capacity for some inhitope–glycosidase pairs, and 3) interactions of the multivalent inhibitors with non‐glycone sites is critical for glycosidase recognition. The ensemble of results point to a shift in the binding mode on going from monovalent to multivalent systems: in the first case a typical ′′key–lock′′ model involving, essentially, the high‐affinity active site can be assumed, whereas in the second, a lectin‐like behavior implying low‐affinity non‐glycone sites probably operates. The differences in responsiveness to multivalency for different glycosidases can then be rationalized in terms of the structure and accessibility of the corresponding carbohydrate‐binding regions.  相似文献   

11.
Protein toxins produced by bacteria are the cause of many life‐threatening diarrheal diseases. Many of these toxins, including cholera toxin (CT), enter the cell by first binding to glycolipids in the cell membrane. Inhibiting these multivalent protein/carbohydrate interactions would prevent the toxin from entering cells and causing diarrhea. Here we demonstrate that the site‐specific modification of a protein scaffold, which is perfectly matched in both size and valency to the target toxin, provides a convenient route to an effective multivalent inhibitor. The resulting pentavalent neoglycoprotein displays an inhibition potency (IC50) of 104 pM for the CT B‐subunit (CTB), which is the most potent pentavalent inhibitor for this target reported thus far. Complexation of the inhibitor and CTB resulted in a protein heterodimer. This inhibition strategy can potentially be applied to many multivalent receptors and also opens up new possibilities for protein assembly strategies.  相似文献   

12.
We report an innovative supramolecular architecture for bienzymatic glucose biosensing based on the non‐covalently functionalization of multi‐walled carbon nanotubes (MWCNTs) with two proteins, glucose oxidase (GOx) (to recognize glucose) and avidin (to allow the specific anchoring of biotinylated horseradish peroxidase (b‐HRP)). The optimum functionalization was obtained by sonicating for 10 min 0.50 mg mL?1 MWCNTs in a solution of 2.00 mg mL?1 GOx+1.00 mg mL?1avidin prepared in 50 : 50 v/v ethanol/water. The sensitivity to glucose for glassy carbon electrodes (GCE) modified with MWCNTs‐GOx‐avidin dispersion and b‐HRP (GCE/MWCNTs‐GOx‐avidin/b‐HRP), obtained from amperometric experiments performed at ?0.100 V in the presence of 5.0×10?4 M hydroquinone, was (4.8±0.3) μA mM?1 (r2=0.9986) and the detection limit was 1.2 μM. The reproducibility for 5 electrodes using the same MWCNTs/GOx‐avidin dispersion was 4.0 %, while the reproducibility for 3 different dispersions and 9 electrodes was 6.0 %. The GCE/MWCNT‐GOx‐avidin/b‐HRP was successfully used for the quantification of glucose in a pharmaceutical product and milk.  相似文献   

13.
Polyvalent carbohydrate–protein interactions occur frequently in biology, particularly in recognition events on cellular membranes. Collectively, they can be much stronger than corresponding monovalent interactions, rendering it difficult to control them with individual small molecules. Artificial macromolecules have been used as polyvalent ligands to inhibit polyvalent processes; however, both reproducible synthesis and appropriate characterization of such complex entities is demanding. Herein, we present an alternative concept avoiding conventional macromolecules. Small glycodendrimers which fulfill single molecule entity criteria self‐assemble to form non‐covalent nanoparticles. These particles—not the individual molecules—function as polyvalent ligands, efficiently inhibiting polyvalent processes both in vitro and in vivo. The synthesis and characterization of these glycodendrimers is described in detail. Furthermore, we report on the characterization of the non‐covalent nanoparticles formed and on their biological evaluation.  相似文献   

14.
In this study, we present nanodomes‐combined surface relief gratings (SRGs) of azopolymer films with controlled shapes and sizes. We investigate the effect of the polarization mode of light interference on leading nanodomes in the conventional SRG patterns. In addition, we also systematically study the relationship between Bragg distance of light interference and shapes of nanodomes. From this, we explain the anisotropic self‐assembled behavior nanodomes in photoaddressable azopolymer films regarding polarization modes as well as spatial confinement effect. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 731–737  相似文献   

15.
The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure–activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide‐based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin‐binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells.  相似文献   

16.
A modified gold surface that allows photoregulated binding of α‐chymotrypsin has previously been reported. Here the development of this surface is reported, through the synthesis of a series of trifluoromethyl ketones and α‐keto esters containing the azobenzene group and a surface attachment group as photoswitch inhibitors of α‐chymotrypsin. All of the compounds are inhibitors of the enzyme, with activity that can be modulated by photoisomerization. The best photoswitch shows a reversible change in IC50 inhibition constant of >5.3 times on photoisomerization. The trifluoromethyl ketone 1 exhibited excellent photoswitching and was attached to a gold surface in a two‐step procedure involving an azide–alkyne cycloaddition. The resulting modified surface bound α‐chymotrypsin to a degree that could be modulated by UV/Vis irradiation, showing “slow‐tight” enzyme binding as observed for inhibitors in solution.  相似文献   

17.
Surface display of biomolecules on live cells offers new opportunities to treat human diseases and perform basic studies. Existing methods are primarily focused on monovalent functionalization, that is, the display of single biomolecules across the cell surface. Here we show that the surface of live cells can be functionalized to display polyvalent biomolecular structures through two‐step reactions under physiological conditions. This polyvalent functionalization enables the cell surface to recognize the microenvironment one order of magnitude more effectively than with monovalent functionalization. Thus, polyvalent display of biomolecules on live cells holds great potential for various biological and biomedical applications.  相似文献   

18.
Core–shell microparticles that consist of poly(vinyl neodecanoate) (VND) crosslinked with poly(ethylene glycol dimethacrylate) (EGDMA) as the core and poly(ethylene glycol methacrylate) (PEGMA) ( = 360 or = 526 g · mol?1) as the shell have been synthesized using suspension polymerization by a conventional free radical polymerization process. Interfacial tension and stability tests show that PEGMA acts as an amphiphilic macromonomer and is located on the oil/water interface of the suspension system, thus forming an outer layer during the polymerization. Kinetic studies of the monomers' conversion of VND, EGDMA, and PEGMA have been carried out using 1H NMR spectroscopy. EGDMA and PEGMA were found to have faster reaction rates compared to VND. Moreover, scanning electron microscopy showed that the polymerization of these particles starts from the shell and finishes towards the core. Consequently, the resulting microsphere is found to have a multi‐layer structure. Biotin was covalently bound to the surface by the PEGMA hydroxy groups. Conjugation of biotin with streptavidin PE (phycoerythrin) was subsequently carried out. Confocal microscopy was used to confirm the presence of fluorescing streptavidin. The amount of avidin conjugated to the microspheres was calculated by the release of a 2‐(4‐hydroxyphenylazo)benzoic acid/avidin complex using UV/vis spectroscopy. One avidin molecule was found to occupy 7 nm2 on the surface of the microspheres.

  相似文献   


19.
The unicellular cyanobacterium Cyanothece sp. CCY 0110 is a highly efficient producer of extracellular polymeric substances (EPS), releasing up to 75% of the polymer to the culture medium. The carbohydrate polymer released to the medium (RPS) was previously isolated and characterized; it is composed of nine different monosaccharides including two uronic acids, and also containing peptides and sulfate groups. Here it is shown that the RPS spontaneously assembles with proteins at high concentrations leading to a phase transition. The proteins are released progressively and structurally intact near physiological conditions, primarily through the swelling of the polymer–protein matrix. The releasing kinetics of the proteins can be modulated through the addition of divalent cations, such as calcium. Notably, the polymer is not toxic to human dermal neonatal fibroblasts in vitro at RPS concentrations bellow 0.1 mg mL−1. The results show that this polymer is a good candidate for the delivery of therapeutic macromolecules.

  相似文献   


20.
Gold nanoparticles‐coated polystyrene (AuNPs‐coated PS) composite particles with raspberry‐like morphology are successfully prepared with the aid of a unique thermodynamically driving effect. It is of considerable interest that the AuNPs generate and self‐assemble with raw, ordinary PS microspheres that preexist in the oxidation–reduction systems. The synthesized AuNPs‐coated PS composite particles have been extensively characterized using scanning electron microscope, transmission electron microscope, and UV–Vis‐NIR spectroscopy. The results indicate that the morphology of the resultant composite particles is governed by simply changing the amount and type of reductants and the concentration of PS microspheres. The AuNPs‐coated PS composite particles also exhibit the good surface‐enhanced Raman scattering and catalytic performances.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号