首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Intramolecular hydrogen atom transfer is an established approach for the site‐specific functionalization of unactivated, aliphatic C−H bonds. Transformations using this strategy typically require unstable intermediates formed using strong oxidants and have mainly targeted C−H halogenations or intramolecular aminations. Herein, we report a site‐specific C−H functionalization that significantly increases the synthetic scope and convergency of reactions proceeding via intramolecular hydrogen atom transfer. Stable, isolable N‐dithiocarbamates are used as precursors to amidyl radicals formed via either light or radical initiation to efficiently deliver highly versatile alkyl dithiocarbamates across a wide range of complex structures.  相似文献   

2.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

3.
A method for site‐specific intermolecular γ‐C(sp3)?H functionalization of ketones has been developed using an α‐aminoxy acid auxiliary applying photoredox catalysis. Regioselective activation of an inert C?H bond is achieved by 1,5‐hydrogen atom abstraction by an oxidatively generated iminyl radical. Tertiary and secondary C‐radicals thus formed at the γ‐position of the imine functionality undergo radical conjugate addition to various Michael acceptors to provide, after reduction and imine hydrolysis, the corresponding γ‐functionalized ketones.  相似文献   

4.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

5.
The N‐centered radical directed remote C?H bond functionalization via hydrogen‐atom‐transfer at distant sites has developed as an enormous potential tool for the organic synthetic chemists. Unactivated and remote secondary and tertiary, as well as selected primary C?H bonds, can be utilized for functionalization by following these methodologies. The synthesis of the heterocyclic scaffolds provides them extra attention for the modern days′ developments in this field of unactivated remote C?H bonds functionalizations.  相似文献   

6.
Radical‐involved enantioselective oxidative C?H bond functionalization by a hydrogen‐atom transfer (HAT) process has emerged as a promising method for accessing functionally diverse enantioenriched products, while asymmetric C(sp3)?H bond amination remains a formidable challenge. To address this problem, described herein is a dual CuI/chiral phosphoric acid (CPA) catalytic system for radical‐involved enantioselective intramolecular C(sp3)?H amination of not only allylic positions but also benzylic positions with broad substrate scope. The use of 4‐methoxy‐NHPI (NHPI=N‐hydroxyphthalimide) as a stable and chemoselective HAT mediator precursor is crucial for the fulfillment of this transformation. Preliminary mechanistic studies indicate that a crucial allylic or benzylic radical intermediate resulting from a HAT process is involved.  相似文献   

7.
The synthetic utility of tertiary amines to oxidatively generate α‐amino radicals is well established, however, primary amines remain challenging because of competitive side reactions. This report describes the site‐selective α‐functionalization of primary amine derivatives through the generation of α‐amino radical intermediates. Employing visible‐light photoredox catalysis, primary sulfonamides are coupled with electron‐deficient alkenes to efficiently and mildly construct C?C bonds. Interestingly, a divergence between intermolecular hydrogen‐atom transfer (HAT) catalysis and intramolecular [1,5] HAT was observed through precise manipulation of the protecting group. This dichotomy was leveraged to achieve excellent α/δ site‐selectivity.  相似文献   

8.
Mild conditions are reported for the hydroxylation of aliphatic C? H bonds through radical translocation, oxidation to carbocation, and nucleophilic trapping with H2O. This remote functionalization employs fac‐[Ir(ppy)3] together with Tzo sulfonate esters and sulfonamides to facilitate the site‐selective replacement of relatively inert C? H bonds with the more synthetically useful C? OH group. The hydroxylation of a range of substrates and the methoxylation of two substrates through 1,6‐ and 1,7‐hydrogen‐atom transfer are demonstrated. In addition, a synthesis of the antidepressant fluoxetine using remote hydroxylation as a key step is presented.  相似文献   

9.
Regioselective incorporation of a particular functional group into aliphatic sites by direct activation of unreactive C?H bonds is of great synthetic value. Despite advances in radical‐mediated functionalization of C(sp3)?H bonds by a hydrogen‐atom transfer process, the site‐selective vinylation of remote C(sp3)?H bonds still remains underexplored. Reported herein is a new protocol for the regioselective vinylation of unactivated C(sp3)?H bonds. The remote C(sp3)?H activation is promoted by a C‐centered radical instead of the commonly used N and O radicals. The reaction possesses high product diversity and synthetic efficiency, furnishing a plethora of synthetically valuable E alkenes bearing tri‐/di‐/mono‐fluoromethyl and perfluoroalkyl groups.  相似文献   

10.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

11.
The development of new hydrogen‐atom transfer (HAT) strategies within the framework of photoredox catalysis is highly appealing for its power to activate a desired C−H bond in the substrate leading to its selective functionalization. Reported here is the first photoredox‐mediated hydrogen‐atom transfer method for the efficient synthesis of ynones, ynamides, and ynoates with high regio‐ and chemoselectivity by direct functionalization of C (O)−H bonds. The broad synthetic application of this method has been demonstrated by the selective functionalization of C(O)−H bonds within complex molecular scaffolds.  相似文献   

12.
The direct α‐arylation of cyclic and acyclic ethers with heteroarenes has been accomplished through the design of a photoredox‐mediated C? H functionalization pathway. Transiently generated α‐oxyalkyl radicals, produced from a variety of widely available ethers through hydrogen atom transfer (HAT), were coupled with a range of electron‐deficient heteroarenes in a Minisci‐type mechanism. This mild, visible‐light‐driven protocol allows direct access to medicinal pharmacophores of broad utility using feedstock substrates and a commercial photocatalyst.  相似文献   

13.
Ruthenium‐catalyzed meta‐C?H activation of arenes at room temperature is reported to proceed under blue‐light irradiation. A variety of heteroarenes are compatible with this photochemical process, which leads to the corresponding meta C?C coupling products in good to very good yields. Initial mechanistic studies suggest a single‐electron transfer process occurs between a photoexcited RuII‐cyclometalated complex and alkyl halides, enabling meta‐C?H functionalization reaction via carbon‐centered radicals.  相似文献   

14.
In the title compound, [Zn(CH3COO)2(C4H8N2S)2]·H2O, the Zn atom is tetrahedrally coordinated in the ZnO2S2 form. N—H?O and O—H?O intramolecular and intermolecular hydrogen bonds are formed by the four N atoms and the water mol­ecule. N—H?O intermolecular hydrogen bonds and C—H?S and C—H?O intermolecular interactions interconnect columns formed by the mol­ecules into layers. Adjacent layers are then linked by other N—H?O and O—H?O intermolecular hydrogen bonds to form a three‐dimensional framework throughout the structure. The orientations of the acetate planes are such that the Zn atom lies within them.  相似文献   

15.
The thermal decomposition processes of two polyamides, derived from succinic acid and two aromatic diamines, were studied by direct pyrolysis mass spectrometry. Fast atom bombardment (FAB) mass spectrometry has been also used in order to provide additional information for the elucidation of the thermal degradation mechanism of the polymers investigated. FAB mass spectra, obtained by introducing in the FAB ion source the solid residues from polymer pyrolysis performed in thermogravimetric experiments, allowed the detection of diagnostic compounds up to about 1600 amu. Our results indicate that the thermal stability of the N-methyl-substituted polyamide is higher than that of the unsubstituted polyamide. The difference in the thermal degradation mechanism accounts for the difference in the thermal stability of the two polyamides. In fact, the unsubstituted polyamide decomposes via an intramolecular exchange and a concomitant N? H hydrogen transfer process with formation of compounds with amine and/or succinimide end groups. Instead, the N-methyl-substituted polyamide decomposes via an α C? H hydrogen transfer process from the methyl group to the nitrogen atom with formation of compounds with amine and/or 2,5-piperidinedione end groups.  相似文献   

16.
A highly site‐selective, heteroatom‐guided, palladium‐catalyzed direct arylation of 4H‐chromenes is reported. The C?H functionalization is driven not only by the substituents and structure of the substrate but also by the coupling partner being used. The diastereoselective assembly of the core structure of Myristinin B has been achieved by using a dual C?H functionalization strategy for regioselective direct arylation.  相似文献   

17.
The first transition‐metal‐free, site‐specific umpolung trifluoromethylthiolation of tertiary alkyl ethers has been developed, achieving the challenging tertiary C(sp3)–SCF3 coupling under redox‐neutral conditions. The synergism of organophotocatalyst 4CzIPN and BINOL‐based phosphorothiols can site‐selectively cleave tertiary sp3 C(sp3)–O ether bonds in complex molecules initiated by a polarity‐matching hydrogen‐atom‐transfer (HAT) event. The incorporation of several competing benzylic and methine C(sp3)?H bonds in alkyl ethers has little influence on the regioselectivity. Selective difluoromethylthiolation of C?O bonds has also been achieved. This represents not only an important step forward in trifluoromethylthiolation but also a promising means for site‐selective C?O bond functionalization of unsymmetrical tertiary alkyl ethers.  相似文献   

18.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

19.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

20.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号