首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A facile avenue to fabricate micrometer‐sized chiral (L ‐, D ‐) and meso‐like (dl ‐) SiO2 materials with unique structures by using crystalline complexes (cPEI/tart), composed of comblike polyethyleneimine (cPEI) and L ‐, D ‐, or dl ‐tartaric acid, respectively, as catalytic templates is reported. Interestingly, both chiral crystalline complexes appeared as regularly left‐ and right‐twisted bundle structures about 10 μm in length and about 5 μm in diameter, whereas the dl ‐form occurred as circular structures with about 10 μm diameter. Subsequently, SiO2@cPEI/tart hybrids with high silica content (>55.0 wt %) were prepared by stirring a mixture containing tetramethoxysilane (TMOS) and the aggregates of the crystalline complexes in water. The chiral SiO2 hybrids and calcined chiral SiO2 showed very strong CD signals and a nanofiber‐based morphology on their surface, whereas dl ‐SiO2 showed no CD activity and a nanosheet‐packed disklike shape. Furthermore, metallic silver nanoparticles (Ag NPs) were encapsulated in each silica hybrid to obtain chiral (D and L forms) and meso‐like (dl form) Ag@SiO2 composites. Also, the reaction between L ‐cysteine (Lcys) and these Ag@SiO2 composites was preliminarily investigated. Only chiral L ‐ and D ‐Ag@SiO2 composites promoted the reaction between Lcys and Ag NPs to produce a molecular [Ag–Lcys]n complex with remarkable exciton chirality, whereas the reaction hardly occurred in the case of meso‐like (dl ‐) Ag@SiO2 composite.  相似文献   

2.
3‐Phenyllactic acid is an antimicrobial compound with broad‐spectrum activity against various bacteria and fungus. The observed difference in pharmacological activity between optical isomeric 3‐phenyllactic acid necessitates a method for enantioseparation. Chiral ligand exchange countercurrent chromatography was investigated for the enantioseparation of 3‐phenyllactic acid with a synthesized chiral ligand. A two‐phase solvent system was composed of n‐butanol/hexane/water (0.4:0.6:1, v/v/v) to which Nn‐dodecyl‐l ‐hydroxyproline was added to the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transitional metal ion. The influence factors were optimized by enantioselective liquid–liquid extraction. Baseline enantioseparation of racemic 3‐phenyllactic acid by analytical high‐speed countercurrent chromatography was achieved. The optical purities of enantiomeric 3‐phenyllactic acid reached 99.0%, as determined by chiral high‐performance liquid chromatography.  相似文献   

3.
A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl‐tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l ‐tyrosine (l ‐Tyr), compared to the analogs d ‐Tyr, p‐acetyl‐, and p‐azido‐phenylalanine (ac‐Phe, az‐Phe). We simulate l ‐ and d ‐Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous “MD/GBSA” procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l ‐Tyr, ac‐ and az‐Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l ‐Tyr or d ‐Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l ‐Tyr is the ligand and a d ‐Tyr specific mutant when d ‐Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
Chiral quantum dots (QDs), differing in their core or shell size and, consequently, in their optical properties, were synthesized by the treatment of commercially available amine‐capped quantum dots with methyl ester N‐acetyl‐L ‐cysteine (CysP). Interestingly, their colloidal methanol solutions remain stable for several months. Their NMR and IR spectra were in accordance with CysP binding to the QD surface through two anchoring groups; its thiolate (strongly bound) and the carbonyl group of its ester (weaker bound) group, whereas their circular dichroism (CD) spectra showed a new broad redshifted band, suggesting that the attachment to the QD surface modified the conformational equilibrium towards conformer(s) with optical activity in this region. These QDs were sufficiently fluorescent to perform studies of the chiral recognition of drugs, in particular the aryl propionic acids (APAs) ketoprofen (KP), naproxen (NP), flurbiprofen (FP), and ibuprofen (IP). We used different drug concentration ranges, depending on the QD solubility. All the assayed drugs quenched the QD emission in a concentration‐dependent mode. Quenching fluorescence assays with the chiral QDs (CS@CysP) showed their extraordinary capacity for the chiral recognition of KP, NP, and FP, and particularly in the case of KP and FP, a remarkable positive allosteric effect was detected for the R enantiomer. By using a drug/CS@CysP molar ratio of 5000:1 and 2500:1, the changes of intensity and the sign of the CD spectrum of the drug evidenced the dissociation of the drug carboxylic group in the presence of the QD.  相似文献   

5.
Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light–matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ‐Glu‐Cys and Cys‐Gly and analyzed crystallographically. The γ‐Glu‐Cys‐directed NPs present a cube‐like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys‐Gly exhibited a rhombic dodecahedron‐like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ‐Glu‐Cys generated an intermediate concave hexoctahedron morphology, while Cys‐Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys‐Gly are named 432 helicoid V because of their unique morphology and growth pathway.  相似文献   

6.
The accumulation and deposition of β‐amyloid (Aβ) plaques in the brain is considered a potential pathogenic mechanism underlying Alzheimer's disease (AD). Chiral l/d ‐FexCuySe nanoparticles (NPs) were fabricated that interfer with the self‐assembly of Aβ42 monomers and trigger the Aβ42 fibrils in dense structures to become looser monomers under 808 nm near‐infrared (NIR) illumination. d ‐FexCuySe NPs have a much higher affinity for Aβ42 fibrils than l ‐FexCuySe NPs and chiral Cu2?xSe NPs. The chiral FexCuySe NPs also generate more reactive oxygen species (ROS) than chiral Cu2?xSe NPs under NIR‐light irradiation. In living MN9D cells, d ‐NPs attenuate the adhesion of Aβ42 to membranes and neuron loss after NIR treatment within 10 min without the photothermal effect. In‐vivo experiments showed that d ‐FexCuySe NPs provide an efficient protection against neuronal damage induced by the deposition of Aβ42 and alleviate symptoms in a mouse model of AD, leading to the recovery of cognitive competence.  相似文献   

7.
Novel polyamide with chiral environment was obtained from aromatic diamine, 4,4′‐diaminodiphenylmethane (DADPM), and N‐α‐protected L ‐glutamic acid, N‐α‐benzoyl‐L ‐glutamic acid (Benzoyl‐L ‐Glu‐OH). The optical rotation ([α]D ) of the polyamide was determined to be 3.6° (c = 1.00 g/dL in DMF), implying that the optically active polyamide was obtained. The present polyamide gave a durable self‐standing membrane. The membrane selectively incorporated the D ‐isomer of Ac‐Trp from racemic mixture of Ac‐Trp. The adsorption selectivity toward Ac‐D ‐Trp was determined to be 1.95. It showed chiral separation ability by adopting potential difference as a driving force for membrane transport. The permselectivity was dependent on the potential difference, and at the applied potential difference of 3.0 V, the membrane selectively transported Ac‐D ‐Trp and the permselectivity toward Ac‐D ‐Trp was determined to be 1.84, which was close to the adsorption selectivity of 1.95. Contrary to this, the membrane showed opposite permselectivity at the applied potential difference of 2.0 V and the permselectivity toward the L ‐isomer reached 2.48. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2530–2538, 2009  相似文献   

8.
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1‐alkyl‐3‐methylimidazolium L ‐proline (L ‐Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers—dl ‐phenylalanine (dl ‐Phe), dl ‐histidine (dl ‐His), dl ‐tryptophane (dl ‐Trp), and dl ‐tyrosine (dl ‐Tyr)—were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (Rs)=3.26–10.81 for HPLC; Rs=1.34–4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L ‐Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L ‐Pro are consequently attached to the support surface, thus inducing an ion‐exchange type of retention for the dl ‐enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand‐exchange‐based chiral separation. It also reveals the tremendous application potential of this new type of task‐specific ILs.  相似文献   

9.
The chromatographic retention mechanism describing relationship between retention factor and concentration of Cu2+(l ‐phenylalanine)2 using chiral ligand mobile phase was investigated and eight mandelic acid derivatives were enantioseparated by chiral ligand exchange chromatography. The relationship between retention factor and concentration of the Cu2+(l ‐phenylalanine)2 complex was proven to be in conformity with chromatographic retention mechanism in which chiral discrimination occurred both in mobile and stationary phase. Different copper(II) salts, chiral ligands, organic modifier, pH of aqueous phase, and conventional temperature on retention behavior were optimized. Eight racemates were successfully enantioseparated on a common reversed‐phase column with an optimized mobile phase composed of 6 mmol/L of l ‐phenylalanine or N,N‐dimethyl‐l ‐phenylalanine and 3 mmol/Lof copper(II) acetate or copper(II) sulfate aqueous solution and methanol.  相似文献   

10.
In the present study, chiral CuxCoyS nanoparticles (NPs) were developed to selectively induce apoptosis of senescent cells using both an alternating magnetic field (AMF) and near infrared (NIR) photon illumination. The chiral effects on living cells were investigated, and d ‐CuxCoyS NPs showed about 2.5 times higher of internalized ability than l ‐NPs. By modifying beta 2 macroglobulin (MG), senescent cells were effectively eliminated by d ‐CuxCoyS NPs without damaging the activities of normal cells under AMF and photon illumination. Compared to the individual application of NIR illumination and AMF, their synergistic effect induced the production of caspase‐3 with a much shorter treatment time and higher efficiency due to the more serious photon‐induced cellular redox and mechanical damage of cellular skeleton. Moreover, the developed strategy was successfully used to remove senescent cells in vivo. This study developed a controllable way of regulating cell activities using chiral NPs, which will provide a valuable way for treating diseases and promoting health.  相似文献   

11.
Au nanoparticles (NPs) functionalized with thioaniline and cysteine are used to assemble bis‐aniline‐bridged Au‐NP composites on Au surfaces using an electropolymerization process. During the polymerization of the functionalized Au NPs in the presence of different amino acids, for example, L ‐glutamic acid, L ‐aspartic acid, L ‐histidine, and L ‐phenylalanine, zwitterionic interactions between the amino acids and the cysteine units linked to the particles lead to the formation of molecularly imprinted sites in the electropolymerized Au‐NP composites. Following the elimination of the template amino acid molecules, the electropolymerized matrices reveal selective recognition and binding capabilities toward the imprinted amino acid. Furthermore, by imprinting of L ‐glutamic or D ‐glutamic acids, chiroselective imprinted sites are generated in the Au‐NP composites. The binding of amino acids to the imprinted recognition sites was followed by surface plasmon resonance spectroscopy. The refractive index changes occurring upon the binding of the amino acids to the imprinted sites are amplified by the coupling between the localized plasmon associated with the Au NPs and the surface plasmon wave.  相似文献   

12.
Separation of racemic mixture of (RS)‐bupropion, (RS)‐baclofen and (RS)‐etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l ‐amino acids, namely, l ‐proline, l ‐histidine, l ‐phenylalanine and l ‐tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)‐bupropion, or (RS)‐baclofen or (RS)‐etodolac. As a result, formation of a pair of diastereomeric complexes occurred by ‘chiral ligand exchange’ via the competition between the chelating l ‐amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre‐column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)‐Bup, 220 nm for (RS)‐Bac and 223 nm for (RS)‐Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
《Electroanalysis》2004,16(11):955-960
Enantioselective resolution is realized by combining potentiometry with ligand exchange (CE) in a new method called chiral ligand exchange potentiometry (CLEP). A chiral selector, N‐carbobenzoxy‐L ‐aspartic acid (N‐CBZ‐L‐Asp), preferentially recognizes D ‐aspartic acid (D‐Asp) and undergoes ligand exchange with the enantiomeric labile coordination complexes of [Cu(II)(D‐Asp)2] or [Cu(II)(L‐Asp)2] to form a diastereoisomeric complex [(D‐Asp)Cu(II)(N‐CBZ‐L‐Asp)] (a) or [(L‐Asp)Cu(II)(N‐CBZ‐L‐Asp)] (b). Considerable stereoselectivity occurs in the formation of these diastereoisomeric complexes, and their net charges were ?2 (a) and 0 (b), respectively, resulting in different Nernst factor (electrode slope), thus enabling chiral D‐Asp to be distinguished by potentiometry without any pre‐ or postseparation processes.  相似文献   

14.
A chiral carthamin model (3S,3′S)‐1‐[5‐acetyl‐2,6‐diketo‐3‐C‐β‐d ‐glucopyranosylcyclohex‐4‐enylidene]‐1′‐[5′‐acetyl‐3′‐C‐β‐d ‐glucopyranosyl‐2′,3′,4′‐trihydroxy‐6′‐oxocyclohexa‐1′,4′‐dienyl]methane, in which two cinnamoyl groups were replaced by an acetyl group, was synthesized by the dimerization of (S)‐2‐acetyl‐4‐C‐(per‐O‐acetyl‐β‐d ‐glucopyranosyl)cyclohexadienone with glyoxylic acid, followed by peroxidase‐catalyzed oxidative decarboxylation and de‐O‐acetylation, or de‐O‐acetylation and peroxidase‐catalyzed oxidative decarboxylation. The corresponding total yields were 12.5% or 17.1% from 3‐C‐(per‐O‐acetyl‐β‐d ‐glucopyranosyl)phloroacetophenone, and the reaction pathway was identical to the biosynthetic pathway.  相似文献   

15.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

16.
We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface‐enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical and experimental approach. The systems we have studied systematically are the amino acids (L ‐alanine, L ‐tryptophan, and L ‐histidine), peptides (N‐4271 acetyl L ‐alanine N′‐methyl amide, N‐acetyl L ‐tryptophan N′‐methyl amide, N‐acetyl L ‐histidine N′‐methyl amide, L ‐alanyl L ‐alanine, tri‐L ‐serine, N‐acetyl L ‐alanine L ‐proline L ‐tyrosine N′‐methyl amide, Leu‐enkephalin, cyclo‐(gly‐L ‐pro)3, N‐acetyl (L ‐alanine)n N′‐methyl amide), 3‐methyl indole, and a variety of small molecules (dichlobenil and 2,6‐dochlorobenzamide) of relevance to the protein systems under study. We have used molecular mechanics, the SCC‐DFTB, SCC‐DFTB+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties of these molecules in their various environments. The application of these spectroscopies to biophysical and environmental assays is expanding, and therefore a thorough understanding of the phenomenon from a rigorous theoretical basis is required. In addition, we give some exciting and new preliminary results which allow us to extend our methods to even larger and more complex systems. The work presented here is the current state of the art to this ever and fast changing field of theoretical spectroscopic interpretation and use of VA, VCD, Raman, ROA, EA, and ECD spectroscopies. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

17.
Selective tumor targeting and drug delivery are critical for cancer treatment. Stimulus‐sensitive nanoparticle (NP) systems have been designed to specifically respond to significant abnormalities in the tumor microenvironment, which could dramatically improve therapeutic performance in terms of enhanced efficiency, targetability, and reduced side‐effects. We report the development of a novel L ‐cysteine‐based poly (disulfide amide) (Cys‐PDSA) family for fabricating redox‐triggered NPs, with high hydrophobic drug loading capacity (up to 25 wt % docetaxel) and tunable properties. The polymers are synthesized through one‐step rapid polycondensation of two nontoxic building blocks: L ‐cystine ester and versatile fatty diacids, which make the polymer redox responsive and give it a tunable polymer structure, respectively. Alterations to the diacid structure could rationally tune the physicochemical properties of the polymers and the corresponding NPs, leading to the control of NP size, hydrophobicity, degradation rate, redox response, and secondary self‐assembly after NP reductive dissociation. In vitro and in vivo results demonstrate these NPs’ excellent biocompatibility, high selectivity of redox‐triggered drug release, and significant anticancer performance. This system provides a promising strategy for advanced anticancer theranostic applications.  相似文献   

18.
This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter‐current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di‐n‐butyl l ‐tartrate combined with boric acid as the chiral selector. The two‐phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di‐n‐butyl l ‐tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high‐speed CCC in a single run, yielding 40–42 mg of (R)‐ and (S)‐propafenone enantiomers with an HPLC purity over 90–95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85–90%.  相似文献   

19.
This work deals with the enantioseparation of α‐amino acids by chiral ligand exchange high‐speed countercurrent chromatography using Nn‐dodecyl‐l ‐hydroxyproline as a chiral ligand and copper(II) as a transition metal ion. A biphasic solvent system composed of n‐hexane/n‐butanol/aqueous phase with different volume ratios was selected for each α‐amino acid. The enantioseparation conditions were optimized by enantioselective liquid–liquid extractions, in which the main influence factors, including type of chiral ligand, concentration of chiral ligand and transition metal ion, separation temperature, and pH of the aqueous phase, were investigated for racemic phenylalanine. Altogether, we tried to enantioseparate 15 racemic α‐amino acids by the analytical countercurrent chromatography, of which only five of them could be successfully enantioseparated. Different elution sequence for phenylalanine enantiomer was observed compared with traditional liquid chromatography and the proposed interactions between chiral ligand, transition metal ion (Cu2+), and enantiomer are discussed.  相似文献   

20.
Supramolecular chemistry utilizes coordination bonds to assemble molecular building blocks into a variety of sophisticated constructs. However, traditional coordination assemblies are based on organic compounds that have limited ability to transport charge. Herein, we describe coordination assembly of anisotropic FeS2 pyrite nanoparticles (NPs) that can facilitate charge transport. Zn2+ ions form supramolecular complexes with carboxylate end‐groups on NP surface, leading to multiparticle sheets with liquid‐crystal‐like organization. Conductivity and Hall carrier mobility of the p‐type layered semiconductor films with Zn2+ coordination bridging exceed those known for coordination compounds, some by several orders of magnitude. The nanoscale porosity of the assembled sheets combined with fast hole transport leads to high electrocatalytic activity of the NP films. The coordination assembly of NPs embraces the versatility of several types of building blocks and opens a new design space for self‐organized materials combining nanoscale and supramolecular structural motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号