首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hybrid organic‐inorganic perovskites, especially methylammonium lead triiodide (MAPbI3), are intensely studied for their optoelectronic properties. The organic MA+ cation is held responsible for the superior performance of MAPbI3 but also its instability toward moisture and heat. To explore compositions beyond MAPbI3, we performed experiments and calculations on two isomorphous perovskites CsSnBr3 and MASnBr3. CsSnBr3 is slightly smaller than MASnBr3 in cell dimension, but outperforms MASnBr3 in band gap energy, charge‐carrier reduced effective mass, and optical dielectric constant all by ≈19 %. These merits accumulate to drastically cut the exciton binding energy from 33 meV for MASnBr3 to 19.6 meV for CsSnBr3, making CsSnBr3 a black, free‐carrier semiconductor. CsSnBr3 also exhibits distinctly higher stability toward moisture and heat than its organic counterparts. These advantages suggest ecofriendly applications for CsSnBr3, such as tandem solar cells and direct X‐ray detectors.  相似文献   

2.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   

3.
Methylammonium lead iodide perovskite (MAPbI3), a prototype material for potentially high‐efficient and low‐cost organic–inorganic hybrid perovskite solar cells, has been investigated intensively in recent years. A study of low‐energy electron‐induced transformations in MAPbI3 is presented, performed by combining controlled electron‐impact irradiation with X‐ray photoelectron spectroscopy and scanning electron microscopy. Changes were observed in both the elemental composition and the morphology of irradiated MAPbI3 thin films as a function of the electron fluence for incident energies from 4.5 to 60 eV. The results show that low‐energy electrons can affect structural and chemical properties of MAPbI3. It is proposed that the transformations are triggered by the interactions with the organic part of the material (methylammonium), resulting in the MAPbI3 decomposition and aggregation of the hydrocarbon layer.  相似文献   

4.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

5.
Recently, lead halide‐based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic‐inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long‐term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3, X is halide) as all‐inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3‐based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs.  相似文献   

6.
Halide perovskites have received attention in the field of photocatalysis owing to their excellent optoelectronic properties. However, the semiconductor properties of halide perovskite surfaces and the influence on photocatalytic performance have not been systematically clarified. Now, the conversion of triose (such as 1,3‐dihydroxyacetone (DHA)) is employed as a model reaction to explore the surface termination of MAPbI3. By rational design of the surface termination for MAPbI3, the production rate of butyl lactate is substantially improved to 7719 μg g?1 cat. h?1 under visible‐light illumination. The MAI‐terminated MAPbI3 surface governs the photocatalytic performance. Specially, MAI‐terminated surface is susceptible to iodide oxidation, which thus promotes the exposure of PbII as active sites for this photocatalysis process. Moreover, MAI‐termination induces a p‐doping effect near the surface for MAPbI3, which facilitates carrier transport and thus photosynthesis.  相似文献   

7.
Organic–inorganic hybrid perovskites have attracted significant attention owing to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors, and lasers. The rational design of these hybrid materials is a key factor in the optimization of their performance in perovskite‐based devices. Herein, a mechanochemical approach is proposed as a highly efficient, simple, and reproducible method for the preparation of four types of hybrid perovskites, which were obtained in large amounts as polycrystalline powders with high purity and excellent optoelectronics properties. Two archetypal three‐dimensional (3D) perovskites (MAPbI3 and FAPbI3) were synthesized, together with a bidimensional (2D) perovskite (Gua2PbI4) and a “double‐chain” one‐dimensional (1D) perovskite (GuaPbI3), whose structure was elucidated by X‐ray diffraction.  相似文献   

8.
Organometallic halide perovskites have attracted great research interest as light‐active materials for use in optoelectronics. Here, we report a high‐performance photoconductor based on a methylammonium lead iodide (MAPbI3) film that was prepared from a methylamine‐treated MAPbI3/PbI2 perovskite film. An ultrahigh responsivity of 3.6 A W?1 and detectivity of 5.4×1012 Jones were obtained for the film under 0.5 mW cm?2 white‐light illumination. In addition, under 420 nm light irradiation, the film exhibited its highest responsivity and detectivity of 30 A W?1 and 2.4×1014 Jones, respectively. The excellent photo‐response performance results from the improved electronic quality and suppressed nonradiative recombination channels of the treated perovskite thin film.  相似文献   

9.
Halide double perovskites have recently bloomed as the green candidates for optoelectronic applications, such as X‐ray detection. Despite great efforts, the exploration of promising organic–inorganic hybrid double perovskites toward X‐ray detection remains unsuccessful. Now, single crystals of the lead‐free hybrid double perovskite, (BA)2CsAgBiBr7 (BA+ is n‐butylammonium), featuring the unique 2D multilayered quantum‐confined motif, enable quite large μτ (mobility‐lifetime) product up to 1.21×10?3 cm2 V?1. This figure‐of‐merit realized in 2D hybrid double perovskites is unprecedented and comparable with that of CH3NH3PbI3 wafers. (BA)2CsAgBiBr7 crystals also exhibit other intriguing attributes for X‐ray detection, including high bulk resistivity, low density of defects and traps, and large X‐ray attenuation coefficient. Consequently, a vertical‐structure crystal device under X‐ray source yields a superior sensitivity of 4.2 μC Gyair?1 cm?2.  相似文献   

10.
The secondary building units in metal–organic frameworks (MOFs) are commonly well‐defined metal–oxo clusters or chains with very limited structural strain. Herein, the structurally deformable haloplumbate units that are often observed in organolead halide perovskites have been successfully incorporated into MOFs. The resultant materials are a rare class of isoreticular MOFs exhibiting large Stokes‐shifted broadband white‐light emission, which is probably induced by self‐trapped excitons from electron–phonon coupling in the deformable, zigzag [Pb2X3]+ (X=Cl, Br, or I) chains. In contrast, MOFs with highly symmetric, robust haloplumbate chains only exhibit narrow UV–blue photoemission. The designed MOF‐based intrinsic white‐light photoemitters have a number of advantages over hybrid inorganic–organic perovskites in terms of stability and tunability, including moisture resistance, facile functionalization of photoactive moieties onto the organic linkers, introduction of luminescent guests.  相似文献   

11.
As a result of their attractive optoelectronic properties, metal halide APbI3 perovskites employing formamidinium (FA+) as the A cation are the focus of research. The superior chemical and thermal stability of FA+ cations makes α‐FAPbI3 more suitable for solar‐cell applications than methylammonium lead iodide (MAPbI3). However, its spontaneous conversion into the yellow non‐perovskite phase (δ‐FAPbI3) under ambient conditions poses a serious challenge for practical applications. Herein, we report on the stabilization of the desired α‐FAPbI3 perovskite phase by protecting it with a two‐dimensional (2D) IBA2FAPb2I7 (IBA=iso‐butylammonium overlayer, formed via stepwise annealing. The α‐FAPbI3/IBA2FAPb2I7 based perovskite solar cell (PSC) reached a high power conversion efficiency (PCE) of close to 23 %. In addition, it showed excellent operational stability, retaining around 85 % of its initial efficiency under severe combined heat and light stress, that is, simultaneous exposure with maximum power tracking to full simulated sunlight at 80 °C over 500 h.  相似文献   

12.
Metal halide perovskites have emerged as a new generation of X‐ray detector materials. However, large‐sized MAPbI3 single crystals (SCs) still exhibit lower performance than MAPbBr3 SCs in X‐ray detection. DFT (density functional theory) simulations suggest the problem could be overcome by alloying large‐sized cations at the A site. The alloyed process could notably decrease the electron–phonon coupling strength and increase the material defect formation energy. Accordingly, centimeter‐sized alloyed DMAMAPbI3 (DMA=dimethylammonium) and GAMAPbI3 (GA=guanidinium) SCs are obtained. Electrical characterizations confirm the GAMAPbI3 SCs display improved charge collection efficiency. It also exhibits a remarkable reduction of dark current, an important figure of merit for X‐ray detectors. With a judiciously designed device architecture, the overall detector performance confirms GAMAPbI3 SCs as one of the most sensitive perovskite X‐ray detectors to date.  相似文献   

13.
Long afterglow materials can store and release light energy after illumination. A brick‐like, micrometer‐sized Sr2MgSi2O7:Eu2+,Dy3+ long‐afterglow material is used for hydrogen production by the photocatalytic reforming of methanol under round‐the‐clock conditions for the first time, achieving a solar‐to‐hydrogen (STH) conversion efficiency of 5.18 %. This material is one of the most efficient photocatalysts and provides the possibility of practical use on a large scale. Its remarkable photocatalytic activity is attributed to its unique carrier migration path and large number of lattice defects. These findings expand the application scope of long afterglow materials and provide a new strategy to design efficient photocatalysts by constructing trap levels that can prolong carrier lifetimes.  相似文献   

14.
The synthesis of previously unknown perovskite (CH3NH3)2PdCl4 is reported. Despite using an organic cation with the smallest possible alkyl group, a 2D organic–inorganic layered Pd‐based perovskites was still formed. This demonstrates that Pd‐based 2D perovskites can be obtained even if the size of the organic cation is below the size limit predicted by the Goldschmidt tolerance‐factor formula. The (CH3NH3)2PdCl4 phase has a bulk resistivity of 1.4 Ω cm, a direct optical gap of 2.22 eV, and an absorption coefficient on the order of 104 cm?1. XRD measurements suggest that the compound is moderately stable in air, an important advantage over several existing organic–inorganic perovskites that are prone to phase degradation problems when exposed to the atmosphere. Given the recent interest in organic–inorganic perovskites, the synthesis of this new Pd‐based organic–inorganic perovskite may be helpful in the preparation and understanding of other organic–inorganic perovskites.  相似文献   

15.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

16.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

17.
Various mixed liquid crystals containing crown ether‐cholesteryl liquid crystal, benzo‐15‐crown‐5‐COO‐C27H45 (B15C5‐COOCh), with various common cholesteric liquid crystals, e.g., cholesteryl chloride, cholesteryl benzoate and cholesteryl palmitate, were prepared and studied using polarizing microscopy and differential scanning calorimetry. Investigating the concentration effect of B15C5‐COOCh in mixed liquid crystals revealed that the addition of B15C5‐COOCh resulted in wider phase transition temperature ranges of these cholesteryl liquid crystals. The stability of these B15C5‐COOCh/cholesteryl mixed liquid crystals was studied using comprehensive graphic molecular modeling computer programs (Insight II and Discover) to calculate their molecular energy and stability energy. The effect of salts, e.g. Na+, Co3+, Y3+ and La3+, on the transition temperature range of the mixed liquid crystals was also investigated. The crown ether cholesteric liquid crystal B15C5‐COOCh was applied both as a surfactant and an ion transport carrier to transport metal ions through liquid membranes. Cholesteryl benzo‐15‐crown‐5 exhibited distinctive characteristics of a surfactant and the critical micellar concentration (CMC) of the surfactant was investigated by the pyrene fluorescence probe method. Cholesteryl benzo‐15‐crown‐5 was successfully applied as a good ion transport carrier (Ionophore) to transport various metal ions, e.g. Li+, Na+, La3+, Fe3+ and Co3+, through organic liquid membranes. The transport ability of the cholesteryl benzo‐15‐crown‐5 surfactant for these metal ions was in the order: Co3+ ≥ Li+ > Fe3+ > Na+ > La3+.  相似文献   

18.
3D and 2D hybrid perovskites, which have been known for more than 20 years, have emerged recently as promising materials for optoelectronic applications, particularly the 3D compound (CH3NH3)PbI3 (MAPI). The discovery of a new family of hybrid perovskites called d ‐MAPI is reported: the association of PbI2 with both methyl ammonium (MA+) and hydroxyethyl ammonium (HEA+) cations leads to a series of five compounds with general formulation (MA)1−2.48x(HEA)3.48x[Pb1−xI3−x]. These materials, which are lead‐ and iodide‐deficient compared to MAPI while retaining 3D architecture, can be considered as a bridge between the 2D and 3D materials. Moreover, they can be prepared as crystallized thin films by spin‐coating. These new 3D materials appear very promising for optoelectronic applications, not only because of their reduced lead content, but also in account of the large flexibility of their chemical composition through potential substitutions of MA+, HEA+, Pb2+ and I ions.  相似文献   

19.
A three‐dimensional (3D) cage‐like organic network (3D‐CON) structure synthesized by the straightforward condensation of building blocks designed with gas adsorption properties is presented. The 3D‐CON can be prepared using an easy but powerful route, which is essential for commercial scale‐up. The resulting fused aromatic 3D‐CON exhibited a high Brunauer–Emmett–Teller (BET) specific surface area of up to 2247 m2 g?1. More importantly, the 3D‐CON displayed outstanding low pressure hydrogen (H2, 2.64 wt %, 1.0 bar and 77 K), methane (CH4, 2.4 wt %, 1.0 bar and 273 K), and carbon dioxide (CO2, 26.7 wt %, 1.0 bar and 273 K) uptake with a high isosteric heat of adsorption (H2, 8.10 kJ mol?1; CH4, 18.72 kJ mol?1; CO2, 31.87 kJ mol?1). These values are among the best reported for organic networks with high thermal stability (ca. 600 °C).  相似文献   

20.
Recently, CuI‐ and AgI‐based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb‐based halide perovskite absorbers. However, up to date, only AgI‐based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of CuI‐based analogues. Here we show that, owing to the much higher energy level for the Cu 3d10 orbitals than for the Ag 4d10 orbitals, CuI atoms energetically favor 4‐fold coordination, forming [CuX4] tetrahedra (X=halogen), but not 6‐fold coordination as required for [CuX6] octahedra. In contrast, AgI atoms can have both 6‐ and 4‐fold coordinations. Our density functional theory calculations reveal that the synthesis of CuI halide double perovskites may instead lead to non‐perovskites containing [CuX4] tetrahedra, as confirmed by our material synthesis efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号