首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The enantioselective synthesis of pyrazolone‐fused spirocyclohexadienones was demonstrated by the reaction of α,β‐unsaturated aldehydes with α‐arylidene pyrazolinones under oxidative N‐heterocyclic carbene (NHC)catalysis. This atom‐economic and formal [3+3] annulation reaction proceeds through a vinylogous Michael addition/spiroannulation/dehydrogenation cascade to afford spirocyclic compounds with an all‐carbon quaternary stereocenter in moderate to good yields and excellent ee values. Key to the success of the reaction is the cooperative NHC‐catalyzed generation of chiral α,β‐unsaturated acyl azoliums from enals, and base‐mediated tandem generation of dienolate/enolate intermediates from pyrazolinones.  相似文献   

4.
A catalytic asymmetric formal [3+3] cycloaddition of 3‐indolylmethanol and an in situ‐generated azomethine ylide has been established to construct a chiral six‐membered piperidine framework with two stereogenic centers. This approach not only represents the first enantioselective cycloaddition of isatin‐derived 3‐indolylmethanol, but also has realized an unusual enantioselective formal [3+3] cycloaddition of azomethine ylide rather than its common [3+2] cycloadditions. Besides, this protocol combines the merits of a multicomponent reaction and organocatalysis, which efficiently assembles a variety of isatin‐derived 3‐indolylmethanols, aldehydes, and amino esters into structurally diverse spiro[indoline‐3,4′‐pyridoindoles] with one all‐carbon quaternary stereogenic center in high yields and excellent enantioselectivities (up to 93 % yield, >99 % enantiomeric excess (ee)). Although the diastereoselectivity of the reaction is generally moderate, most of the diastereomers can be separated by using column chromatography followed by preparative TLC.  相似文献   

5.
6.
The catalytic enantioselective synthesis of α‐fluorinated chiral tertiary alcohols from (hetero)aryl methyl ketones is described. The use of a bifunctional iminophosphorane (BIMP) superbase was found to facilitate direct aldol addition by providing the strong Brønsted basicity required for rapid aryl enolate formation. The new synthetic protocol is easy to perform and tolerates a broad range of functionalities and heterocycles with high enantioselectivity (up to >99:1 e.r.). Multi‐gram scalability has been demonstrated along with catalyst recovery and recycling. 1H NMR studies identified a 1400‐fold rate enhancement under BIMP catalysis, compared to the prior state‐of‐the‐art catalytic system. The utility of the aldol products has been highlighted with the synthesis of various enantioenriched building blocks and heterocycles, including 1,3‐aminoalcohol, 1,3‐diol, oxetane, and isoxazoline derivatives.  相似文献   

7.
8.
A practical and sustainable chemical process for the synthesis of highly substituted aldol?lactol products was achieved for the first time through the asymmetric Barbas–List aldol (BLA) reaction of 2‐hydroxybenzaldehydes with acetone in the presence of a catalytic amount of trans‐4‐OH‐L ‐proline (see scheme).

  相似文献   


9.
A direct, concise, and enantioselective synthesis of 2‐substituted 4,4,4‐trifluorobutane‐1,3‐diols based on the organocatalytic asymmetric direct aldol reaction of an ethyl hemiacetal of trifluoroacetaldehyde with various aldehydes was examined. A catalytic amount (30 mol %) of commercially available and inexpensive l ‐prolinamide is quite effective as an organocatalyst for the catalytic in situ generation of gaseous and unstable trifluoroacetaldehyde from its hemiacetal, and a successive asymmetric direct aldol reaction with various aldehydes in dichloromethane at 0 °C, followed by reduction with sodium borohydride, gives 2‐substituted 4,4,4‐trifluorobutane‐1,3‐diols in moderate to good yields (31–84 %) with low diastereoselectivities and good to excellent enantioselectivities (64–97 % ee).  相似文献   

10.
A highly enantioselective synthesis of functionalized cyclopentanoids by a formal asymmetric (4+1) annulation strategy was developed. The methodology consists of a stereoselective cyclopropanation reaction between chiral sulfur ylides and 1,3‐dienes followed by a, in situ, stereospecific MgI2‐catalyzed rearrangement of vinylcyclopropanes. This method is distinguished by a remarkable compatibility with functional groups and a high stereocontrol.  相似文献   

11.
The first peri‐ and stereoselective [10+4] cycloaddition between catalytically generated amino isobenzofulvenes and electron‐deficient dienes is described. The highly stereoselective catalytic [10+4] cycloaddition exhibits a broad scope with high yields, reflecting a robust higher‐order cycloaddition. Experimental and computational investigations support a kinetic distribution of intermediate rotamers dictating the enantioselectivity, which relies heavily on additive effects.  相似文献   

12.
Yukun Zhang  Jun Zhu  Na Yu  Han Yu 《中国化学》2015,33(2):171-174
The 4,5‐methano‐L‐proline was used as chiral organocatalysts in direct asymmetric aldol reactions. Under the optimal conditions, excellent enantioselectivities (up to 99% ee) were obtained with high chemical yields (up to 95%) for a series of aldehydes using only 5 mol% catalyst loading. To show the practicality of the method, the reaction was tested at a large scale. The reaction was complete in 16 h, and the aldol product was obtained in 86% yield and 93% ee.  相似文献   

13.
14.
15.
The first enantioselective formal [4+2] cycloadditions of 3‐nitroindoles are presented. By using 3‐nitroindoles in combination with an organocatalyst, chiral dihydrocarbazole scaffolds are formed in moderate to good yields (up to 87 %) and enantioselectivities (up to 97 % ee). The reaction was extended to include enantioselective [4+2] cycloadditions of 3‐nitrobenzothiophene. The reaction proceeds through a [4+2] cycloaddition/elimination cascade under mild reaction conditions. Furthermore, a diastereoselective reduction of an enantioenriched cycloadduct is presented. The mechanism of the reaction is discussed based on experimental and computational studies.  相似文献   

16.
17.
Herein we report the enantioselective (4+2) annulation of donor–acceptor cyclobutanes and unsaturated acyl fluorides using N‐heterocyclic carbene catalysis. The reaction allows a 3‐step synthesis of cyclohexyl β‐lactones (25 examples) in excellent chemical yield (most ≥90 %) and stereochemical integrity (all >20:1 d.r., most ≥97:3 e.r.). Mechanistic studies support ester enolate Claisen rearrangement, while derivatizations provide functionalized cyclohexenes and dihydroquinolinones.  相似文献   

18.
A new Michael–Michael cascade reaction between 2‐(2‐oxoindolin‐3‐ylidene)acetic esters 1 and nitroenoates 2 , catalyzed by bifunctional thioureas, is investigated. The combination of the two Michael reactions results in a novel and facile [4+2] or [3+2] spiroannulation process, which is characterized by the following features: 1) two carbon–carbon bonds and four stereocenters, including a quaternary spiro carbon, are formed under mild conditions; 2) an unprecedented and stereochemically defined substitution pattern on the spirocarbocyclic unit is obtained; 3) the double‐bond configuration of the donor–acceptor nitroenoate 2 determines the absolute configuration of the spiro center, whereas the remaining stereocenters are formed under control of the catalyst. The effect on the final stereochemical outcome of structural variations of each starting material, catalyst, and experimental conditions is analyzed in detail. In particular, the use of specifically designed chiral nitroenoates enables diverse polyfunctional spirocyclohexane derivatives containing six consecutive stereogenic centers to be constructed. To our knowledge, this is the first asymmetric organocatalytic strategy enabling both five‐ and six‐membered β‐nitro spirocarbocyclic oxindoles.  相似文献   

19.
The efficient, 12–14 step (LLS) total synthesis of (?)‐halenaquinone has been achieved. Key steps in the synthetic sequence include: (a) proline sulfonamide‐catalyzed, Yamada–Otani reaction to establish the C6 all‐carbon quaternary stereocenter, (b) multiple, novel palladium‐mediated oxidative cyclizations to introduce the furan moiety, and (c) oxidative Bergman cyclization to form the final quinone ring.  相似文献   

20.
A direct catalytic asymmetric aldol‐type reaction of 3‐substituted‐2‐oxindoles with glyoxal derivatives and ethyl trifluoropyruvate, catalyzed by a chiral N,N′‐dioxide–Sc(OTf)3 (Tf=trifluoromethanesulfonyl) complex, has been developed that tolerates a wide range of substrates. The reaction proceeds in good yields and excellent enantioselectivities (up to 93 % yield, 99:1 diastereomeric ratio (dr), and >99 % enantiomeric excess (ee)) under mild conditions, to deliver 3‐(α‐hydroxy‐β‐carbonyl) oxindoles with vicinal quaternary–tertiary or quaternary–quaternary stereocenters. Even with 1 mol % catalyst loading or on scaleup (10 mmol of starting material), maintenance of ee was observed, which showed the potential value of the catalyst system. In studies probing the reaction mechanism, a positive nonlinear effect was observed and ScIII‐based enolate intermediates were detected by using ESIMS. On the basis of the experimental results and previous reports, a possible catalytic cycle was assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号