首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
含负折射率材料一维光子晶体的全方位带隙和缺陷模   总被引:9,自引:3,他引:6  
运用光学传输矩阵理论,研究了含负折射率材料一维二元光子晶体的禁带特性和局域模特性,发现了一种新型全方位光子带隙.与传统的Bragg带隙相比,这种新型全方位光子带隙的中心频率和带宽对入射角的变化不敏感.讨论了引入缺陷层后,入射角变化和各层介质厚度做一定比例的缩放时对缺陷模位置的影响.这种特性在具有固定带宽的全方位反射器和微波技术中全方位或大入射角滤波器方面有重要的应用价值.  相似文献   

2.
Detection thresholds for temporal gaps between markers of dissimilar frequency are usually elevated with respect to thresholds for gaps between markers of similar frequency. Because gaps between markers of dissimilar frequency represent both a spectrally based perceptual discontinuity as well as a temporal discontinuity, it is not clear what factors underlie the threshold elevation. This study sought to examine the effects of perceptual dissimilarities on gap detection. The first experiment measured gap detection for configurations of narrow-band gap markers comprised of pure tones, frequency-modulated tones, and amplitude-modulated tones. The results showed that gap thresholds for frequency-disparate pure-tone markers were elevated with respect to isofrequency tonal markers, but that perceptual discontinuities between markers restricted to the same frequency region did not uniformly elevate threshold. The second experiment measured gap detection for configurations of markers where the leading and trailing markers could differ along the dimensions of bandwidth, duration, and pitch. The results showed that, in most cases, gap detection deteriorated when the bandwidth of the two markers differed, even when the spectral content of the narrower-band marker was completely subsumed by the spectral content of the wider-band marker. This finding suggests that gap detection is sensitive to spectral dissimilarity between markers in addition to spectral discontinuity. The effects of marker duration depended on the marker bandwidth. Pitch differences across spectrally similar markers had no effect.  相似文献   

3.
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call Local Topological Quantum Order and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al. on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.  相似文献   

4.
Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems. On a quantum computer, only log2N qubits are required for the simulation of an N-dimensional quantum system, hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods. Recently, a quantum simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4, 52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various photosynthetic systems. We show that for Drude–Lorentz spectral density, the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density. The effects of different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied. The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.  相似文献   

5.
A finite transfer integral t(a) orthogonal to the conducting chains of a highly one-dimensional metal gives rise to empty and filled bands that simulate an indirect-gap semiconductor upon formation of a charge-density wave (CDW). In contrast to semiconductors such as Ge and Si with band gaps approximately 1 eV, the CDW system possesses an indirect gap with a greatly reduced energy scale, enabling moderate laboratory magnetic fields to have a major effect. The consequent variation of the thermodynamic gap with magnetic field due to Zeeman splitting and Landau quantization enables the electronic band structure parameters (transfer integrals, Fermi velocity) to be determined accurately. These parameters reveal the orbital quantization limit to be reached at approximately 20 T in (Per)2M(mnt)(2) salts, making them highly unlikely candidates for a recently proposed cascade of field-induced CDW states.  相似文献   

6.
We study an adiabatic evolution that approximates the physical dynamics and describes a natural parallel transport in spectral subspaces. Using this we prove two folk theorems about the adiabatic limit of quantum mechanics: 1. For slow time variation of the Hamiltonian, the time evolution reduces to spectral subspaces bordered by gaps. 2. The eventual tunneling out of such spectral subspaces is smaller than any inverse power of the time scale if the Hamiltonian varies infinitly smoothly over a finite interval. Except for the existence of gaps, no assumptions are made on the nature of the spectrum. We apply these results to charge transport in quantum Hall Hamiltonians and prove that the flux averaged charge transport is an integer in the adiabatic limit.  相似文献   

7.
We study quantum transport in honeycomb lattice ribbons with either armchair or zigzag edges. The ribbons are coupled to semi-infinite linear chains serving as the input and output leads and we use a tight-binding Hamiltonian with nearest-neighbor hops. The input and output leads are coupled to the ribbons through bar contacts. In narrow ribbons we find transmission gaps for both types of edges. The appearance of this gap is due to the enhanced quantum interference coming from the multiple channels in bar contacts. The center of the gap is at the middle of the band in ribbons with armchair edges. This particle-hole symmetry is because bar contacts do not mix the two sublattices of the underlying bipartite honeycomb lattice when the ribbon has armchair edges. In ribbons with zigzag edges the gap center is displaced to the right of the band center. This breakdown of particle-hole symmetry is the result of bar contacts now mixing the two sublattices. We also find transmission oscillations and resonances within the transmitting region of the band for both types of edges. Extending the length of a ribbon does not affect the width of the transmission gap, as long as the ribbon’s length is longer than a critical value when the gap can form. Increasing the width of the ribbon, however, changes the width of the gap. In ribbons with zigzag edges the gap width systematically shrinks as the width of the ribbon is increased. In ribbons with armchair edges the gap is not well-defined because of the appearance of transmission resonances. We also find only evanescent waves within the gap and both evanescent and propagating waves in the transmitting regions.  相似文献   

8.
One dimensional (1D) metals are unstable at low temperature undergoing a metal-insulator transition coupled with a periodic lattice distortion, a Peierls transition. Angle-resolved photoemission study for the 1D metallic chains of In on Si(111), featuring a metal-insulator transition and triple metallic bands, clarifies in detail how the multiple band gaps are formed at low temperature. In addition to the gap opening for a half-filled ideal 1D band with a proper Fermi surface nesting, two other quasi-1D metallic bands are found to merge into a single band, opening a unique but k-dependent energy gap through an interband charge transfer. This result introduces a novel gap-opening mechanism for a multiband Peierls system where the interband interaction is important.  相似文献   

9.
If an ionic material is used in a photonic crystal, the lattice resonance creates a polaritonic gap in the infrared range. The interaction between a polaritonic gap and the structure gap in a 2D square photonic crystal is studied by transfer matrix photonic band structure calculations. The polaritonic gap appears for a surprisingly low volume density of the ionic material. The TM gaps are larger than the TE gaps, as in the dielectric case. By varying the lattice constant, the structure gaps can be shifted across the polaritonic gap, and the effects of merging the two gaps can be studied.  相似文献   

10.
Nachtergaele obtained explicit lower bounds for the spectral gap above many frustration free quantum spin chains by using the martingale method. We present simple improvements to his main bounds which allow one to obtain a sharp lower bound for the spectral gap above the spin-1/2 ferromagnetic XXZ chain. As an illustration of the method, we also calculate a lower bound for the spectral gap of the AKLT model, which is about 1/3 the size of the expected gap.  相似文献   

11.
We calculate the shrinkage of the gaps between the different subbands of a quantum well induced by the presence of a photo-excited electron-hole plasma. The reduction of the higher gaps is found to be almost as strong as that of the fundamental gap. We discuss the importance of the interactions between the different subbands. Our theoretical results compare well with optical transmission experiments.  相似文献   

12.
An integrable spin lattice is a higher dimensional generalization of integrable spin chains. In this paper we consider a special spin lattice related to quantum mechanical interpretation of the three-dimensional lattice model in statistical mechanics (Zamolodchikov and Baxter). The integrability means the existence of a set of mutually commuting operators expressed in the terms of local spin variables. The significant difference between spin chain and spin lattice is that the commuting set for the latter is produced by a transfer matrix with two equitable spectral parameters. There is a specific bilinear functional equation for the eigenvalues of this transfer matrix.The spin lattice is investigated in this paper in the limit when both sizes of the lattice tend to infinity. The limiting form of bilinear equation is derived. It allows to analyze the distributions of eigenvalues of the whole commuting set. The ground state distribution is obtained explicitly. A structure of excited states is discussed.  相似文献   

13.
We report measurements of the quantum Hall state energy gap at avoided crossings between Landau levels originating from different conduction band valleys in AlAs quantum wells. These gaps exhibit an approximately linear dependence on the magnetic field over a wide range of fields and filling factors. More remarkably, we observe an unexpected dependence of the gap size on the relative spin orientation of the crossing levels, with parallel-spin crossings exhibiting larger gaps than antiparallel-spin crossings.  相似文献   

14.
A uniform string with periodically attached spring-mass resonators represents a simple locally resonant continuous elastic system whose band gap mechanisms are basic to more general and complicated problems. In this Letter, analytical models with explicit formulations are provided to understand the band gap mechanisms of such a system. Some interesting phenomena are demonstrated and discussed, such as asymmetric/symmetric attenuation behavior within a resonance gap, and the realization of a super-wide gap due to exact coupling between Bragg and resonance gaps. In addition, some approximate formulas for the evaluation of low frequency resonance gaps are derived using an approach different from existing investigations.  相似文献   

15.
With some reviews on the investigations on the schemes for quantum state transfer based on spin systems, we discuss the quantum dynamics of magnetically-controlled networks for Bloch electrons. The networks are constructed by connecting several tight-binding chains with uniform nearest-neighbor hopping integrals. The external magnetic field and the connecting hopping integrals can be used to control the intrinsic properties of the networks. For several typical networks, rigorous results are shown for some specific values of external magnetic field and the connecting hopping integrals: a complicated network can be reduced into a virtual network, which is a direct sum of some independent chains with uniform nearest-neighbor hopping integrals. These reductions are due to the fermionic statistics and the Aharonov-Bohm effects. In application, we study the quantum dynamics of wave packet motion of Bloch electrons in such networks. For various geometrical configurations, these networks can function as some optical devices, such as beam splitters, switches and interferometers. When the Bloch electrons as Gaussian wave packets input these devices, various quantum coherence phenomena can be observed, e.g., the perfect quantum state transfer without reflection in a Y-shaped beam, the multi-mode entanglers of electron wave by star-shaped network, magnetically controlled switches, and Bloch electron interferometer with the lattice Aharonov-Bohm effects. With these quantum coherent features, the networks are expected to be used as quantum information processors for the fermion system based on the possible engineered solid state systems, such as the array of quantum dots that can be implemented experimentally.   相似文献   

16.
Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs–InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.  相似文献   

17.
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.  相似文献   

18.
杨振清  白晓慧  邵长金 《物理学报》2015,64(7):77102-077102
本文采用第一性原理中基于密度泛函理论(DFT)的广义梯度近似(GGA)方法, 设计了一种新的(TiO2)12 量子环结构, 研究了它的几何结构、平均结合能及电子云分布等属性. 在此新型结构的基础上, 分别采用过渡金属化合物MoS2, MoSe2, MoTe2, WS2, WSe2和WTe2进行掺杂, 并分析了掺杂后体系的几何结构及电子属性(如平均结合能、能级结构、HOMO-LUMO轨道电子云密度分布和电子态密度等). 计算结果表明: (TiO2)12量子环直径为1.059 nm, 呈中心对称分布, 且所有原子组成一个二维平面结构, 使其几何结构比较稳定, 另外该量子环HOMO-LUMO轨道电子云分布均匀, 且能隙为3.17 eV, 与半导体材料TiO2晶体的能隙的实验值(3.2 eV)非常接近. 掺杂后量子环的能隙均大幅减小, 其中WTe2的掺杂结果能隙最小, 仅为0.61 eV, MoTe2的掺杂结果能隙最大, 为1.16 eV, 也比掺杂前减小约2.0 eV. 其他掺杂结果的能隙都在1 eV左右, 变化不大. 这个能隙的TiO2可以利用大部分的太阳光能, 使TiO2具有更为广泛的应用.  相似文献   

19.
杨中强  贾金锋  钱冬 《中国物理 B》2016,25(11):117312-117312
Two-dimensional(2D) topological insulators(TTs,or quantum spin Hall insulators) are special insulators that possess bulk 2D electronic energy gap and time-reversal symmetry protected one-dimensional(1D) edge state.Carriers in the edge state have the property of spin-momentum locking,enabling dissipation-free conduction along the 1D edge.The existence of 2D TIs was confirmed by experiments in semiconductor quantum wells.However,the 2D bulk gaps in those quantum wells are extremely small,greatly limiting potential application in future electronics and spintronics.Despite this limitation,2D TIs with a large bulk gap attracted plenty of interest.In this paper,recent progress in searching for TIs with a large bulk gap is reviewed briefly.We start by introducing some theoretical predictions of these new materials and then discuss some recent important achievements in crystal growth and characterization.  相似文献   

20.
目前不变量本征算符方法已成功地解决了某些量子系统哈密顿量能级问题.对于二维耦合量子谐振子,利用这一方法可以非常简捷有效地给出其能级信息,而不需要使其哈密顿量对角化.计算结果表明,不同耦合形式的二维耦合量子谐振子的能级间隔是不同的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号