首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four novel ustiloxin D analogues were synthesized focusing on the size of the macrocyclic core, the stereochemistry at the bridgehead ether, and the enantiomer of ustiloxin D. All four were subjected to biological evaluation testing the inhibition of tubulin polymerization. Only 2,2-dimethyl-ustiloxin D retained any activity.  相似文献   

2.
Ustiloxin D and phomopsin A are potent antimitotic agents that bind to tubulin and interfere with cellular microtubule function. A synthetic strategy has been developed to allow access to both of the natural products as well as a variety of variants of the ustiloxin and phomopsin family members in order to provide sufficient quantities for biological studies. Herein we report the enantioselective total synthesis of ustiloxin D using a longest linear sequence of 20 steps. Four of the five stereocenters were set using catalytic asymmetric methodologies. In particular, Evans's new Al-catalyzed asymmetric aldol reaction facilitated access to both syn and anti products corresponding to the different benzylic stereochemistries found in ustiloxins and phomopsins. In addition, due to its high functional group tolerance, Trost's Pd-mediated etherification was used to construct the chiral tertiary alkyl-aryl ether. Taken together, these synthetic strategies allow us to use densely functionalized intermediates to realize an efficient synthesis of ustiloxin D.  相似文献   

3.
A comparative study of alkoxycarbonylation processes of both 19-nor-A-ring and A-ring stereoisomers of 1alpha,25-dihydroxyvitamin D3 analogues catalyzed by Candida antarctica lipase B (CAL-B) has been described. The presence of the methyl group in the A-ring at C-2, as in 3-6, has a determining role in the regioselectivity of the biocatalysis, mainly allowing the hydroxyl group at C-5 position to react. For the 19-nor-A-ring stereoisomers 7-10, which lack the C-2 methyl group, the configurations at C-3 and C-5 have a high influence in the selectivity exhibited by CAL-B. Thus, each couple of enantiomers showed opposing regioselectivities depending on the C-3 configuration. When C-3 possesses an (S)-configuration, enzymatic alkoxycarbonylations took place at the C-5-(R) or C-5-(S) hydroxyl groups. However, if the chiral centers at C-3 are (R), CAL-B alkoxycarbonylated the C-3-(R) hydroxyl group independently of the configuration at C-5. The corresponding carbonates are useful A-ring precursors of 1alpha,25-dihydroxyvitamin D3 analogues, selectively modified at the C-1 or C-3 positions. In addition, an improved synthesis of cis A-ring synthons 5 and 6 is described using a Mitsunobu methodology.  相似文献   

4.
As part of investigations into cell cycle checkpoint inhibitors, an asymmetric synthesis of the antimitotic natural product, ustiloxin D, has been completed. A salen-Al-catalyzed aldol reaction was employed to construct a chiral oxazoline 9 (99% yield, 98% ee) that served the dual purpose of installing the necessary 1,2-amino alcohol functionality as well as providing an efficient synthon for the requisite methylamino group at C9. The chiral aryl-alkyl ether was assembled using a Pd-catalyzed asymmetric allylic alkylation that notably delivered a product with stereochemistry opposite to that predicted by precedent. The linear tetrapeptide was subsequently cyclized to produce ustiloxin D. The mechanistic origin of the allylic alkylation selectivity was further investigated, and a working hypothesis for the origin of the observed stereoselectivity has been proposed.  相似文献   

5.
New synthesis of oseltamivir phosphate was accomplished in 9 steps with a 27% overall yield from a readily available (?)-shikimic acid. Selective ring opening reaction of ketal and azide Mitsunobu reaction for facile replacement of a hydroxyl group by the N3 group at the C-3 position of (3R,4R,5R)-ethyl 4-hydroxy-5-(methoxymethoxy)-3-(pentan-3-yloxy)cyclohex-1-enecarboxylate 4 and at the C-4 position of (3R,4S,5R)-ethyl 4-acetamido-5-hydroxy-3-(pentan-3-yloxy)cyclohex-1-enecarboxylate 7 successfully served as the key steps.  相似文献   

6.
Convenient synthetic routes to 1alpha-amino-25-hydroxyvitamin D(3) (3) and 3beta-amino-3-deoxy-1alpha,25-dihydroxyvitamin D(3) (4), novel analogues of vitamin D(3) bearing an amino group at the C-1 or C-3 position, have been developed starting from (S)-(+)-carvone. Construction of the A-ring fragments was accomplished by selective enzymatic hydrolysis of a diester intermediate and introduction of the amino group under Mitsunobu conditions.  相似文献   

7.
Substrate analogues of phosphatidylinositol (1) were synthesized and evaluated as potential inhibitors of the bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus. The chiral analogues of the water-soluble phospholipid substrate 5 were designed to probe the effects of varying the inositol C-2 hydroxyl group, which is generally believed to serve as the nucleophile in the first step of the hydrolysis of phosphatidylinositols by PI-PLC. In the analogues 6-9, the C-2 hydroxyl group on the inositol ring of the phosphatidylinositol derivatives was rationally altered in several ways. Inversion of the stereochemistry at C-2 of the inositol ring led to the scyllo derivative 6. The inositol C-2 hydroxy group was replaced with inversion by a fluorine to produce the scyllo-fluoro inositol 7 and with a hydrogen atom to furnish the 2-deoxy compound 8. The C-2 hydroxyl group was O-methylated to prepare the methoxy derivative 9. The natural inositol configuration at C-2 was retained in the nonhydrolyzable phosphorodithioate analogue 10. The inhibition of PI-PLC by each of these analogues was then analyzed in a continuous assay using D-myo-inositol 1-(4-nitrophenyl phosphate) (25) as a chromogenic substrate. The kinetic parameters for each of these phosphatidylinositol derivatives were determined, and each was found to be a competitive inhibitor with K(i)'s as follows: 6, 0.2 mM; 10, 0.6 mM; 8, 2.6 mM; 9, 6.6 mM; and 7, 8.8 mM. This study further establishes that the hydrolysis of phosphatidylinositol analogues by bacterial PI-PLC requires not only the presence of a C-2 hydroxyl group on the inositol ring, but the stereochemistry at this position must also correspond to the natural myo-configuration. For future inhibitor design, it is perhaps noteworthy that the best inhibitors 6 and 10 each possess a hydroxyl group at the C-2 position. Several of the inhibitors identified in this study are now being used to obtain crystallographic information for an enzyme-inhibitor complex to gain further insights regarding the mechanism of hydrolysis of phosphatidylinositides by this PI-PLC.  相似文献   

8.
(-)-Laulimalide (1), a structurally novel macrolide isolated in trace amounts from marine sponges, promotes abnormal tubulin polymerization and apoptosis in vitro, with a similar mode of action to that of Taxol(R), but with potentially less susceptibility to multidrug resistance. Herein, a flexible and convergent asymmetric synthesis of (-)-laulimalide is described. This synthesis featured a highly diastereoselective Sakurai reaction of 2 with 3 and a regioselective macrolactonization of an unprotected vicinal diol. Laulimalide was synthesized in 25 steps (longest linear; 36 overall) in 3.5% overall yield, providing a uniquely short and efficient route to 1 and its analogues.  相似文献   

9.
[reaction: see text] 9,10-Didehydroepothilone D was synthesized, its conformation was studied, and its tubulin polymerization and antiproliferative activity were compared with that of epothilone D and certain analogues.  相似文献   

10.
耐格霉素是具有抗革兰氏阴性菌活性的天然产物.以廉价易得的3-羰基-4-氯丁酸乙酯为原料,以八步29%的总收率实现了耐格霉素的形式合成.该工作改进了文献的合成路线,利用生物催化不对称还原高立体选择性引入C-5位的手性羟基,并将危险的叠氮引入反应放在合成后期,降低合成路线的操作风险.分子中C-3位的仲碳胺基手性中心通过Ellamn试剂介导的不对称Mannich反应构建.该路线易于放大,有望为构建耐格霉素类似物分子库以及高通量药物筛选奠定基础.  相似文献   

11.
Li P  Evans CD  Joullié MM 《Organic letters》2005,7(23):5325-5327
[reaction: see text] The ustiloxins are a family of heterodetic cyclopeptides that have been isolated from the water extracts of false smut balls on the panicles of rice plants caused by the fungus Ustilaginoidea virens. A concise total synthesis of ustiloxin D has been achieved via an unprecedented ethynyl aziridine ring-opening of phenol derivatives. The longest linear sequence of the synthesis is 15 steps from commercially available compounds.  相似文献   

12.
The synthesis of 12 analogues of adenine substituted at C-8 by an omega-hydroxyalkyl, omega-hydroxyalk-1-enyl, or omega-hydroxyalk-1-ynyl chain of various length has been carried out in five or six steps starting from adenine. The analogues were obtained using a new protecting group of adenine, the tert-butyldimethylsilyloxymethyl group. 9-tert-Butyldimethylsilyloxymethyl-adenine is more soluble than adenine in organic solvents. It was prepared regiospecificaly in two steps from adenine and was amenable to C-8 iodination under basic conditions and to subsequent introduction of the various carbon chains at C-8 by palladium-catalyzed cross-coupling reactions (Stille or Sonogashira). The protecting group was removed under acidic conditions, thus demonstrating its versatility.  相似文献   

13.
The design, chemical synthesis, and biological evaluation of a series of cyclopropyl and cyclobutyl epothilone analogues (3-12, Figure 1) are described. The synthetic strategies toward these epothilones involved a Nozaki-Hiyama-Kishi coupling to form the C15-C16 carbon-carbon bond, an aldol reaction to construct the C6-C7 carbon-carbon bond, and a Yamaguchi macrolactonization to complete the required skeletal framework. Biological studies with the synthesized compounds led to the identification of epothilone analogues 3, 4, 7, 8, 9, and 11 as potent tubulin polymerization promoters and cytotoxic agents with (12R,13S,15S)-cyclopropyl 5-methylpyridine epothilone A (11) as the most powerful compound whose potencies (e.g. IC(50) = 0.6 nM against the 1A9 ovarian carcinoma cell line) approach those of epothilone B. These investigations led to a number of important structure-activity relationships, including the conclusion that neither the epoxide nor the stereochemistry at C12 are essential, while the stereochemistry at both C13 and C15 are crucial for biological activity. These studies also confirmed the importance of both the cyclopropyl and 5-methylpyridine moieties in conferring potent and potentially clinically useful biological properties to the epothilone scaffold.  相似文献   

14.
Suzuki-Miyaura cross-coupling of haloaromatic compounds with arylboronic acids provides a simple entry to biaryl systems. Despite its ease, to date, there are no detailed investigations of this procedure for deoxynucleoside modification. As shown in this study, a wide variety of C-6 arylpurine 2'-deoxyriboside (C-6 aryl 2'-deoxynebularine analogues) and C-2 aryl 2'-deoxyinosine analogues can be conveniently prepared via the Pd-mediated cross-coupling of arylboronic acids with the C-6 halonucleosides, 6-bromo- or 6-chloro-9[2-deoxy-3,5-bis-O-(tert-butyldimethylsilyl)-beta-D-erythro-pentofuranosyl]purine (1 and 2), and the C-2 halonucleoside, 2-bromo-O(6)-benzyl-3',5'-bis-O-(tert-butyldimethylsilyl)-2'-deoxyinosine (3). Although bromonucleoside 1 proved to be a good substrate for the Pd-catalyzed Suzuki-Miyaura cross-couplings, we have noted that for several C-6 arylations, the chloronucleoside 2 provides superior coupling yields. Also described in this study is a detailed evaluation of catalytic systems that led to optimal product recoveries. Finally, a comparison of the C-C and C-N bond-forming reactions of deoxynucleosides is also reported. On the basis of this comparison, we provide evidence that C-N bond formation at the C-6 position, leading to N-aryl 2'-deoxyadenosine analogues, is more sensitive to the ligand used, whereas C-C bond-forming reactions at the same position are not. In contrast to the ligand dependency exhibited in C-N bond formation at the C-6 position, comparable reactions at the C-2 position of purine deoxynucleosides proceed with less sensitivity to the ligand used.  相似文献   

15.
Shan M  O'Doherty GA 《Organic letters》2006,8(22):5149-5152
The enantioselective syntheses of naturally occurring kaempferol glycoside SL0101 (1a) and its analogues 1b-e, as well as their enantiomers, have been achieved in 7-10 steps. The routes rely upon a diastereoselective palladium-catalyzed glycosylation, ketone reduction, and dihydroxylation to introduce the rhamno-stereochemistry. The asymmetry of the sugar moiety of these kaempferol glycosides was derived from Noyori reduction of an acylfuran. An acetyl group shift from an axial (C-2) to equatorial position (C-3) under basic conditions was also described. [reaction: see text]  相似文献   

16.
An efficient synthesis of monoacylated 1alpha,25-dihydroxyvitamin D3 A-ring precursors 15, 16, 18, and 19 has been described through an enzymatic hydrolysis process. Candida antarctica A lipase (CAL-A) hydrolyzes the C-5 acetate ester in trans stereoisomers 9 and 13, with complete and high selectivity, respectively. In the case of cis isomers 11 and 14, Chromobacterium viscosum lipase (CVL) is the enzyme of choice, exhibiting opposite selectivity for these two enantiomers. This lipase selectively catalyzes the hydrolysis at the C-3 acetate in diester 11 and at C-5 position in diester 14. It is noteworthy that through a hydrolysis reaction CAL-A and CVL allow the synthesis of the four A-ring monoacetylated precursors of 1alpha,25-dihydroxyvitamin D3, precursors which are complementary to those obtained by the enzymatic acylation process. In addition, with excellent yield CVL selectively hydrolyzes the C-3 chloroacetate ester instead of the C-5 acetate in diester 22, a key intermediate in the synthesis of new A-ring modified 1alpha,25-dihydroxyvitamin D3 analogues.  相似文献   

17.
A series of epothilone B and D analogues bearing isomeric quinoline or functionalized benzimidazole side chains has been prepared by chemical synthesis in a highly convergent manner. All analogues have been found to interact with the tubulin/microtubule system and to inhibit human cancer cell proliferation in vitro, albeit with different potencies (IC50 values between 1 and 150 nM ). The affinity of quinoline‐based epothilone B and D analogues for stabilized microtubules clearly depends on the position of the N‐atom in the quinoline system, while the induction of tubulin polymerization in vitro appears to be less sensitive to N‐positioning. The potent inhibition of human cancer cell growth by epothilone analogues bearing functionalized benzimidazole side chains suggests that these systems might be conjugated with tumor‐targeting moieties to form tumor‐targeted prodrugs.  相似文献   

18.
The novel product profile obtained by incubating chiral fluorinated substrate analogues with castor stearoyl-ACP Delta(9) desaturase has been rationalized through a series of labeling studies. It was found that the introduction of the Z-double bond between C-9 and C-10 of the parent substrate occurs with pro-R enantioselectivity--a result that accounts for the observed stereochemistry of oxidation products derived from (9R)- and (9S)-9-fluorostearoyl-ACP. Oxidation of (9R)-9-fluorostearoyl-ACP occurs via at least two rapidly interchanging substrate conformations in the active site as detected by reaction pathway branching induced by deuteration at C-10 and C-11. Hydroxylation and desaturation of this substrate share the same site of initial oxidative attack.  相似文献   

19.
A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III mGlu receptors, respectively. Furthermore, azetidine analogues 35, 36, and 40 were also characterized as potential ligands at the glutamate transporter subtypes EAAT1-3 in the FLIPR Membrane Potential (FMP) assay. The (2R)-azetidines 35, 37, 39, 41 and 43 were inactive in iGlu, mGlu and EAAT assays, whereas a marked change in the pharmacological profile at the iGlu receptors was observed when a methyl group was introduced in the C-4 position, compound 36 versus t-CAA. At EAAT1-3, compound 35 was inactive, whereas azetidines 36 and 40 were both identified as inhibitors and showed selectivity for the EAAT2 subtype.  相似文献   

20.
Using 500 MHz NMR, we have carried out a stable ion protonation and model nitration study of the methoxy-substituted hydrocarbon 6, its 15-ol 7, and the dimer 10, in order to evaluate OMe substituent effects on directing electrophilic attack and on charge delocalization mode/conformational aspects in the resulting carbocations. It is found that the C-11 methoxy group directs the electrophilic attack to C-12 and C-14. Thus protonation of 6 with FSO(3)H/SO(2)ClF gives a 4:1 mixture of monoarenium ions 6H(+)()/6aH(+)(). Prolonged reaction times and increased temperature induced fluorosulfonylation at C-14 (6(+)-SO(2)()F), whereas ambient nitration with NO(2)(+)BF(4)(-) occurred at C-12. The 15-ol derivative 7 is cleanly ionized to 11(+)(), providing the first example of an alpha-phenanthrene-substituted carbocation from phenanthrene C-1 position. Contrasting behavior of the D-ring methyl-substituted 9 and the C-11 methoxy-substituted 10 dimers is remarkable in that unlike 9 which is readily cleaved to produce the monomeric arenium ion 3H(+)(), 10 is diprotonated at the two C-12 sites and at C-12/C-14 in each unit. The latter dication-dimer exists as a mixture of diastereomers. Reactivity of 7 underscores the importance of 11(+)(). Attack at the C-14 ring junction is in concert with the proposal that electrophilic oxygen would attack at C-14/C-15 (epoxidation) followed by ring opening to give the biologically active 15-ol as a major metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号