首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work combines new laboratory studies of the near-infrared vibrational spectra of HNO3 with theoretical predictions of these spectra as a means to understand the properties of this molecule at energies well above the fundamental region. Trends in overtone and combination band energy levels and intensities are compiled and examined. The theoretical calculations are in excellent agreement with the observed frequencies and intensities of the transitions in this spectral region. The calculations also serve as a valuable aid for assigning many of the transitions. This work validates the ab initio generated potential energy surface for HNO3 by comparing vibrational perturbation theory calculations to experimental spectra focused on combination band and overtone absorptions.  相似文献   

2.
In this work, the experimental and theoretical vibrational spectra of 1-bromonaphthalene (1-BN) were studied. FTIR and FT Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using ab initio Hartree-Fock and density functional method (B3LYP) with the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FTIR and FT Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The optimized geometric parameters were calculated. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good nonlinear optical (NLO) behaviour. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule.  相似文献   

3.
Quantum-mechanical calculations of optimized structures, harmonic force fields, and vibrational spectra were performed for 10 L-glutamic acid conformers. The vibrational spectra were interpreted using B3LYP/6-31+G** calculations for the stablest conformer. Satisfactory agreement between the experimental and theoretical data was obtained. Vibrational frequency shifts caused by isotopic substitution of various types in the L-glutamic acid molecule were analyzed taking into account the conformational structure and the influence of water medium and molecule ionization. Isotopic tags are suggested that can be used in biochemical studies taking into account their special characteristics.  相似文献   

4.
The complete IR spectra of the title complex Ni(mnt)(bpy) (mnt=maleonitriledithiolate, bpy=2,2'-bipyridine) and a new method to analyze vibrational spectra for such a complicated metal complex are reported in this paper. The molecular geometry, binding, electronic structure and spectroscopic property of it have been studied in detail by theoretical calculations. The geometry optimization from PM3 calculations give that this molecule is of a planar structure with the symmetry point group C(2v) and its ground state is the spin triplet state. The vibrational and electronic spectra were calculated by PM3 and ZINDO/S methods, respectively. The scientific method of analyzing vibrational spectra is established herein by giving main fixed points and pivotal vibrational units. Besides the regular symbols, the new defined symbols eta and M play an important role in describing the vibration modes accurately and vividly.  相似文献   

5.
In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.  相似文献   

6.
In this work we present the experimental and theoretical vibrational absorption (VA) and the theoretical vibrational circular dichroism (VCD) spectra for aframodial. In addition, we present the theoretical VA and VCD spectra for the diasteriomers of aframodial. Aframodial has four chiral centers and hence has 24 = 16 diasteriomers, which occur in eight pairs of enantiomers. In addition to the four chiral centers, there is an additional chirality due to the helicity of the entire molecule, which we show by presenting 12 configurations of the 5S,8S,9R,10S enantiomer of aframodial. The VCD spectra for the diasteriomers and the 12 configurations of one enantiomer are shown to be very sensitive not only to the local stereochemistry at each chiral center, but in addition, to the helicity of the entire molecule. Here one must be careful in analyzing the signs of the VCD bands due to the ‘non-chiral’ chromophores in the molecule, since one has two contributions; one due to the inherent chirality at the four chiral centers, and one due to the chirality of the side chain groups in specific conformers, that is, its helicity. Theoretical simulations for various levels of theory are compared to the experimental VA recorded to date. The VCD spectra simulations are presented, but no experimental VCD and Raman spectra have been reported to date, though some preliminary VCD measurements have been made in Stephens’ lab in Los Angeles. The flexible side chain is proposed to be responsible for the small size of the VCD spectra of this molecule, even though the chiral part of the molecule is very rigid and has four chiral centers. In addition to VCD and Raman measurements, Raman optical activity (ROA) measurements would be very enlightening, as in many cases bands which are weak in both the VA and VCD, may be large in the Raman and/or ROA spectra. The feasibility of using vibrational spectroscopy to monitor biological structure, function and activity is a worthy goal, but this work shows that a careful theoretical analysis is also required, if one is to fully utilize and understand the experimental results. The reliability, reproduceability and uniqueness of the vibrational spectroscopic experiments and the information which can be gained from them is discussed, as well as the details of the computation of VA, VCD and Raman (and ROA) spectroscopy for molecules of the complexity of aframodial, which have multiple chiral centers and flexible side chains. Festschrift in Honor of Philip J. Stephens’ 65th Birthday.  相似文献   

7.
In this work, the experimental and theoretical spectra of 4-chloro-2-bromoacetophenone (4C2BAP) are studied. FT-IR and FT-Raman spectra of title molecule have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (B3LYP) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values are compared with the experimental FT-IR and FT-Raman spectra. The DFT (B3LYP/6-311G (d, p)) calculations are more reliable than the ab initio HF/6-311G (d, p) calculations for the vibrational study of 4C2BAP. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands of the carbonyl and acetyl groups due to the presence of halogens (Cl and Br) in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

8.
In this work, the experimental and theoretical spectra of 3-bromoanisole (3-BA) are studied. FT-IR and FT-Raman spectra of title molecule in the liquid phase have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (LSDA and MPW1PW91) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values have been compared with the experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found in good agreement. The DFT-LSDA/6-311G (d, p) calculations have been found are more reliable than the ab initio HF/6-31G (d, p) calculations for the vibrational study of 3-BA. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands due to the substitutions in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

9.
Fourier Transform spectroscopy with 10?8 second time resolution for recording IR emission spectra has been developed as an efficient means for detecting previously unknown vibrational modes of transient radicals. 193 nm photodissociation of a precursor molecule is used to generate vibrationally excited radicals, from which IR emission is recorded with time and spectral resolution. Assignment of the spectra is performed using information obtained through multiple precursors, isotopic substitution, time dependence of emission intensity, theoretical calculations, and 2‐dimensional cross‐spectra correlation analysis. The radicals vinyl, cyanovinyl, and OCCN have been studied with many vibrational modes identified.  相似文献   

10.
The dynamic processes of N(1s) core-hole excitation in gas-phase CH3CN molecule have been studied at both Hartree-Fock and hybrid density-functional theory levels. The vibrational structure is analyzed for fully optimized core-excited states. Frank-Condon factors are obtained using the linear coupling model for various potential surfaces. It is found that the vibrational profile of the N-K absorption can be largely described by a summation of two vibrational progressions: a structure-rich profile of nu(CN) stretching mode and a large envelope of congestioned vibrational levels related to the strong (-C-CN) terminal bending bond. Excellent agreement between theoretical and experimental spectra is obtained.  相似文献   

11.
In this work, we report a combined experimental and theoretical study on molecular structure (monomer, dimer), vibrational spectra, and Natural Bond Orbital (NBO) analysis of non-ionized L-cysteine (LCY). The FT-IR solid phase (4000-400 cm(-1)) and FT-Raman spectra (3500-50 cm(-1)) of LCY was recorded at room temperature. The molecular geometry, harmonic and anharmonic vibrational frequencies and bonding features of LCY in the ground state have been calculated by using the density functional method (B3LYP) with 6-311G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field (SQMFF) methodology. The first order hyperpolarizability (β(0)) of this novel molecular system and related properties (β, α(0) and Δα) of LCY are calculated using HF/6-311G(d,p) method on the finite-field approach. Stability of the molecule has been analyzed using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Finally the calculations results were applied to stimulate infrared and Raman spectra of the title compound which show good agreement with observed spectra.  相似文献   

12.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 3-aminobenzyl alcohol. The FT-Raman and FT-IR spectra of 3-aminobenzyl alcohol were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by ab initio HF and density functional B3LYP method with 6-311+G(d,p) basis sets. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels of theory. A detailed interpretation of the infrared and Raman spectra of 3-aminobenzyl alcohol is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

13.
The experimental and theoretical study on the structures and vibrations of 6-chloronicotinic acid (6-CNA, C(6)H(4)ClNO(2)) are presented. The Fourier transform infrared spectra (4,000-50 cm(-1)) and the Fourier transform Raman spectra (3,500-50 cm(-1)) of the title molecule in solid phase have been recorded, for the first time. The geometrical parameters and energies have been obtained for all four conformers from DFT (B3LYP) with different basis sets calculations. There are four conformers, C1, C2, C3, and C4 for this molecule. The computational results diagnose the most stable conformer of 6-CNA as the C1 form. The vibrations of the two stable and two unstable conformers of 6-CNA are researched with the aid of quantum chemical calculations. The molecular structure, vibrational frequencies, infrared intensities and Raman scattering activities and theoretical vibrational spectra were calculated a pair of molecules linked by the intermolecular OH...O hydrogen bond. The spectroscopic and theoretical results are compared to the corresponding properties for 6-CNA stable monomers and dimer of C1 conformer.  相似文献   

14.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of benzimidazole. The laser Raman and Fourier transform infrared spectra of benzimidazole were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by HF and density functional B3LYP method with the 6-311G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311G(d,p) and B3LYP/6-31G(d,p)/6-311G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of benzimidazole is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

15.
Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of ferulic acid (FA) (4-hydroxy-3-methoxycinnamic acid) were carried out by using density functional (DFT/B3LYP/BLYP) method with 6-31G(d,p) as basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with single crystal XRD data. The vibrational spectral data obtained from solid phase FT-IR and FT-Raman spectra are assigned based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with calculated values. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the FA molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the infrared and Raman spectra of FA was also reported. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The theoretical FT-IR and FT-Raman spectra for the title molecule have been constructed.  相似文献   

16.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 3,4-dimethoxyaniline (3,4-DMA). The Fourier transform infrared and Fourier transform Raman spectra of 3,4-DMA was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods using 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities, Raman scattering activities and the thermodynamic functions of the title compound were performed at and HF/B3LYP/6-311++G(d,p) level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 3,4-DMA was reported. The theoretical spectrograms for IR and Raman spectra of the title molecule have been constructed.  相似文献   

17.
In this work, we will report a combined experimental and theoretical study on molecular structure, vibrational spectra, NBO and UV spectral analysis of 2-chlorobenzonitrile (2-ClBN). The FT-IR solid phase (4000-400 cm(-1)), and FT-Raman spectra (3500-50 cm(-1)) of 2-ClBN was recorded. The molecular geometry, harmonic vibrational frequencies and bonding features of 2-ClBN in the ground state have been calculated by using the density functional methods (BLYP, B3LYP) with 6-31G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* anti bonding orbitals and E2 energies confirms the occurrence of ICT (Intra molecular Charge Transfer) within the molecule. The UV spectrum was measured in ethanol solution. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) results complements with the experimental findings. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. Finally calculated results were applied to simulated Infrared and Raman spectra of the title compound which show good agreement with observed spectra.  相似文献   

18.
Vibrational spectroscopy is a powerful tool to identify molecules and to characterise their chemical state. Inelastic electron tunnelling spectroscopy (IETS) combined with scanning tunnelling microscopy (STM) allows the application of vibrational analysis to a single molecule. Up to now, IETS was restricted to small species due to the complexity of vibration spectra for larger molecules. We extend the horizon of IETS for both experiment and theory by measuring the STM-IETS spectra of mercaptopyridine adsorbed on the (111) surface of gold and comparing it to theoretical spectra. Such complex spectra with more than 20 lines can be reliably determined and computed leading to completely new insights. Experimentally, the vibrational spectra exhibit a dependence on the specific adsorption site of the molecules. Theoretically, this dependence is only accessible if anharmonic contributions to the interaction potentials are included. These joint experimental and theoretical advances open new perspectives for structure determination of organic adlayers.  相似文献   

19.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at same level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 4NN'DMAP was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

20.
The FTIR and FT-Raman spectra of morpholine-4-ylmethylthiourea (MMTU) were recorded in the region of mid-IR (400-4,000 cm(-1)). Initial geometry generated from the standard geometrical parameters was relaxed without any constraint on the potential energy surface at MP2 and DFT levels adopting the standard 6-31++G and 6-311+G basis set. With the help of two specific scaling procedures the computed harmonic frequencies have been compared with the observed vibrational wave numbers of FTIR and FT-Raman spectra and assigned to different normal modes of the molecule. Most of the vibrational modes have wave numbers in the expected range. The appropriate theoretical spectrograms of the IR spectra of MMTU have been also constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号