首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The room-temperature solution fluorescence quenching of polysilane copolymers by chlorohydrocarbons such as CCl4, CHCl3, C2Cl6, and Cl2CHCHCl2 was studied. The existence of dynamic quenching was preliminarily demonstrated by the experiment of fluorescence lifetime quenching. The fluorescence quenching data were in conformity with the equation: F0/F = (1+KSV[Q])exp(NV[Q]), where F and F0 are the fluorescence intensity with and without the addition of quencher, KSV is the Stern-Volmer constant, [Q] is the quencher concentration, N is the Avogadro constant, and V is the volume of the active sphere. The fluorescence quenching by the first three chlorohydrocarbons was attributed to the contemporaneous effect of dynamic quenching and static quenching. There exists, at least mathematically, a critical quencher concentration [Q]C. When the quencher concentration [Q] < [Q]C, the fluorescence quenching is dominated by the dynamic quenching part; when [Q] > [Q]C, it is dominated by the static quenching part. However, the fluorescence quenching by Cl2CHCHCl2 was attributed to only static quenching. Furthermore, it was proposed that the dynamic quenching may be related with the electrical positivity of the central carbon nucleus of the quenching molecules while the static quenching may be caused by the “outside heavy atom effect” of the Cl element. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Modified Stern-Volmer equation is obeyed by bovine serum albumin (BSA)-iodide system showing selective quenching of tryptophanyl fluorescence of BSA. The fraction of accessible protein fluorescence is 0.56 and the effective Stern-Volmer constant is 290 M-1 at pH 7.4 in 0.005 M phosphate buffer at 25°C. Collisional quenching is operative both in the BSA -I−1 system and the model system, tryptophan-I−1. It is supported by the observed relationship between the ratio of quenching rate constants (k q ) and diffusion coefficients and alsok q with bulk viscosity.  相似文献   

3.
At different temperatures, the interactions between imidacloprid (IMI) and bovine serum albumin (BSA) were investigated with a fluorescence quenching spectrum, a synchronous fluorescence spectrum, a three-dimensional fluorescence spectrum and an ultraviolet-visible spectrum. The average values of bonding constants (KLB: 3.424 × 10^4 L,mol^-1), thermodynamic parameters (△H: 5.188 kJ,mol^-1, △G^(○—):-26.36 kJ,mol^-1, △S: 103.9 J,K^-1,mol^-1) and the numbers of bonding sites (n: 1.156) could be obtained through Stern-Volmer, Lineweaver-Burk and ther- modynamic equations. It was shown that the fluorescence of BSA could be quenched for its reactions with IMI to form a certain kind of new compound. The quenching belonged to a static fluorescence quenching, with a non-radiation energy transfer happening within a single molecule. The thermodynamic parameters agree with △H〉 0, △S〉0 and△G^(○-)〈0, suggesting that the binding power between IMI and BSA should be mainly a hydrophobic interaction.  相似文献   

4.
Three novel electron donor–acceptor conjugated polymers ( P1 – P3 ) bearing various imidazole pendants have been synthesized. Their excellent photophysical and electrochemical properties make them suitable transduction materials for chemosensing applications. Indeed, polymers P1 – P3 have been found to show remarkable sensing capabilities towards H+ and Fe2+ in semi‐aqueous solutions. Upon titration with H+, polymers P1 and P2 showed hypsochromic shifts of their absorptions and photoluminescence (PL) maxima with enhanced fluorescence intensities. However, P3 showed diminished absorption and fluorescence intensities under similar conditions due to static quenching. The anomalous behavior of P3 compared with P1 and P2 has been clarified in terms of electronic distributions through computational analysis. Furthermore, P3 (KSV=1.03×107) showed a superior sensing ability towards Fe2+ compared with P1 (KSV=2.01×106) and P2 (KSV=4.12×106) due to its improved molecular wire effect. Correspondingly, the fluorescence lifetime of P3 was greatly decreased (almost 11‐fold) compared to those of polymers P1 (4.6‐fold) and P2 (6.2‐fold) in the presence of Fe2+. By means of a fluorescence on‐off‐on approach, chemosensing reversibilities in protonation–deprotonation and metallation–demetallation have been achieved by employing triethylamine (TEA) and the disodium salt of ethylenediaminetetraacetic acid (Na2‐EDTA)/phenanthroline, respectively, as suitable counter ligands. 1H NMR titrations have revealed the unique behavior of P3 compared with P1 and P2 . To the best of our knowledge, there have been no previous reports of Fe2+ sensors based on single imidazole receptors conjugated to a main‐chain polymer showing such a diverse sensitivity pattern depending on their attached substituents.  相似文献   

5.
The interaction between a bioactive molecule, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), with human serum albumin (HSA) has been studied using steady-state absorption and fluorescence techniques. A 1:1 complex formation has been established and the binding constant (K) and free energy change for the process have been reported. The AODIQ-HSA complex results in fluorescence resonance energy transfer (FRET) from the tryptophan moiety of HSA to the probe. The critical energy-transfer distance (R 0) for FRET and the Stern-Volmer constant (K sv) for the fluorescence quenching of the donor in the presence of the acceptor have been determined. Importantly, K SV has been shown to be equal to the binding constant itself, implying that the fluorescence quenching arises only from the FRET process. The study suggests that the donor and the acceptor are bound to the same protein at different locations but within the quenching distance.  相似文献   

6.
The interaction between DNA and several newly synthesized derivatives of the natural anticancer compound luotonin A has been studied. The results from our work reveal an effective and selective alkaloid/double-stranded DNA (ds-DNA) interaction. In the presence of increasing amounts of ds-DNA, a noticeable fluorescence quenching of the luotonin A derivatives under study was observed. However, this effect did not take place when single-stranded DNA (ss-DNA) was employed. The association constant alkaloids/ds-DNA was calculated by quantitation of such a quenching effect. The influence of other quenchers, namely Co2+ and Br on the native fluorescence of luotonin A and derivatives was also studied, and a remarkable quenching effect was observed for both ions. We have also investigated how by binding DNA the alkaloids could get protected from the external Co2+ and Br quenchers. The Stern–Volmer constants (K SV) for Co2+ and Br quenching effect on the studied alkaloids were considerably reduced (10–50%) after incubation of the compounds in the presence of DNA with regard to the K SV values in absence of DNA. An increase in the fluorescence anisotropy values of luotonins was also produced only in the presence of ds-DNA but not in the case of ss-DNA. To better characterize the nature of that interaction, viscosimetry assays and ethidium bromide displacement studies were conducted. With regard to DNA reference solutions, the viscosity of solutions containing DNA and luotonin A derivatives was reduced or not significantly increased. It was also observed that the studied compounds were unable to displace the intercalating agent ethidium bromide. All of these results, together with the obtained association constants values (K ass = 2.2 × 102 – 1.3 × 103), support that neither covalent nor intercalating interactions luotonin A derivatives/ds-DNA are produced, leading to the conclusion that these alkaloids bind ds-DNA through the minor groove. The specific changes in the fluorescence behavior of luotonin A and derivatives distinguishing between ss-DNA and ds-DNA binding, lead us to propose these compounds as attractive turn-off probes to detect DNA hybridization.  相似文献   

7.
Quenching of Ru(bpy)32+ electrochemiluminescence (ECL) by Cl?, Br?, and I? ions was studied as a function of halide concentration in a bipolar electrochemical cell. All of the halides investigated showed similar qualitative behavior: above a critical concentration, ECL intensity was found to decrease linearly as the halide ion concentration was increased, due to dynamic quenching of Ru(bpy)32+ ECL. Stern‐Volmer slopes (KSV) of 0.111±0.003, 4.2±0.3, and 6.2±0.3 mM?1 were measured for Cl?, Br? and I?, respectively. The magnitude of KSV correlates with halide ion oxidation potential, consistent with an electron transfer quenching mechanism. Using the bipolar platform described herein, aqueous, halide‐containing solutions could be quantified rapidly using the sequential standard addition method. The lower detection limit is determined by a complex mechanism involving the competitive electrooxidation of halide ions and the ECL co‐reactants, as well as the passivation of the surface of the bipolar electrode, and was found to be 0.20±0.01, 0.08±0.01 and 10±1 mM, respectively, for I?, Br?, and Cl?. The performance of the bipolar ECL quenching assay is comparable to previously published fluorescence quenching methods for the determination of halide ions, while being much simpler and less expensive to implement.  相似文献   

8.
The interaction of [Nd(bpy)2Cl3·OH2], where bipy is 2,2′-bipyridine, with DNA has been studied by absorption, emission, and viscosity measurements. [Nd(bpy)2Cl3·OH2] showed absorption decreasing in charge transfer band with increasing of DNA. The binding constant, Kb has been determined by absorption measurement and found to be (1.5 ± 0.1) × 105 M?1. The fluorescent of [Nd(bpy)2Cl3·OH2] has been investigated in detail. The interaction was also studied by fluorescence quenching technique. The results of fluorescence titration revealed that DNA had the strong ability to quenching the intrinsic fluorescence of Nd(III) complex at 327 nm. The binding site number n, apparent binding constant Kb and the Stern–Volmer quenching constant KSV have been determined. Thermodynamic parameters have been calculated according to relevant fluorescent data and Van’t Hoff equation. Characterization of bonding mode has been studied. The results suggested that the major interaction mode between [Nd(bpy)2Cl3·OH2] and DNA was groove binding.  相似文献   

9.
The luminescence spectral behaviour of the ruthenium(II)-tris-1,2-bipyridine ion (Ru(bpy)32+) included in organically modified silicate gel matrixes, and the luminescence quenching by phenol and dichlorophenols were investigated. The chloro-derivatives were 2,4-, 2,5- and 2,6-dichlorophenol. Sol-gel technology was used to prepare the “sol” with the precursor methyltriethoxysilane. Coating thin films were obtained from the “sol” by spin coating on glass slide. The Ru(bpy)32+ luminescence quenching experiments were carried out with the quencher in aerated aqueous solution at pH 12 in contact with the film. It was possible to observe an important blue shift in the Ru(bpy)32+ emission spectrum included in the films with respect to the aqueous solution. The quenching plots obtained showed a downward curvature. These plots could be fitted satisfactorily by a sum of two terms of Stern-Volmer with quenching constants KSV1 and KSV2 associated to two different binding sites of the ruthenium complex, which indicates the presence of a matrix microheterogeneity in the films. The KSV1 and KSV2 values and the corresponding fractions of the total emission f01 and f02 for both sites in the films suggest that only a low percentage of the probe is accessible to the quencher and that the probe is efficiently quenched in one of the sites. This site of the probe was assigned to the Site 1 in the results analysis. The value of its respective constant, KSV1, was higher than the value of the constant KSV in homogeneous aqueous solution for the studied quenchers, phenol and dichlorophenols.  相似文献   

10.
《Chemical physics》1986,108(3):373-379
The hydroxymethyl radical oxidation kinetics follows the second-order equation with a time-dependent rate constant, K(t). The annealing effect is described by way of dividing K(t) into two factors, one of them depending on the preliminary annealing time (τ): K(t) = K1(t + τ)K2(t). The time dependence of both factors is fairly well approximated by the power functions: K1(t + τ) ≈ (t + τ)−0.18 and K2(tt−0.26. The oxygen quenching of phenanthrene phosphorescence follows an exchange mechanism, with the static conditions setting in at 77 K. At 90 K oxygen diffusion adds to the quenching efficiency. The time of oxygen jumps (τj) and its time dependence under the matrix annealing at 90 K are determined by comparing the theoretical 1/τj dependence of the quenching volume with experiment. The 1/τj(τ) is well described by the power function τ−0.18 ± 0.02). The annealing time functions of the oxidation rate constant and of the inverse jumping time are similar. The oxidation rate constant and the diffusion constant coincide in the order of magnitude. Consequently, the slowing down of oxygen migration contributes essentially to the time dependence of the rate constant.  相似文献   

11.
Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter- and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of K s = 52.3 M−1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.  相似文献   

12.
We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynucleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl‐labeled complementary strand resulted in strong quenching of fluorescence in 85 % of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1×104 and 4.3×105 M ?1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence.  相似文献   

13.
The radical copolymerizations of N-alkylitaconimide (RII, R = CH3, C2H5, n-C3H7, i-C3H7, n-C4H9, i-C4H9, CH2CH2Cl, CH2C6H5) (M1) with styrene (ST) (M2) or methyl methacrylate (MMA)-(M2) were carried out at 60°C, using azobisisobutyronitrile as an initiator in tetrahydrofuran in order to clarify the substituent effect on the copolymerizations. The monomer reactivity ratios r1, r2 and the Q1 and e1 values were determined from the results obtained. It was found that the relative reactivities 1/r2 of RII toward an attack by a poloystyryl radical could be correlated not by the steric-substituent constant Es of the alkyl group in RII but by the polar-substituent constant σ* in Taft's equation: log(1/r2) = ρ*σ* + δ Es. According to the above equation, the ρ* and δ values were obtained as 0.55 and 0, respectively, in the RII-ST system, while in the RII-MMA system, the ρ* and δ values were obtained as 0.49 and 0, respectively. It was also observed that the Q1values for RII were proportional to σ* constants and that the e1 values for RII were independent of σ* substituent constant. It was also found that the weight-average molecular weights of the copolymers are between 8.5 × 104 and 32.5 × 104.  相似文献   

14.
In this study, we used photoluminescence (PL) quenching and transmission electron microscopy (TEM) to study the morphological behavior of hydrogen-bonded (H-bonded) supramolecular assemblies of luminescent H-acceptor polymers and H-donor gold nanoparticles (Au NPs). In fluorescence titration experiments, the lateral Me and MeO substituents on the fluorescent H-acceptor side-chain polymers PBOT1PBOT3 and PBT1PBT3 exhibited different electron-donating capabilities, thereby inducing different degrees of H-bonding and dipole–dipole interactions, as evidenced by effective fluorescence quenching upon the addition of surface-modified Au NPs bearing acid and acid-free surfactants (AuSCOOH and AuSC10, respectively). Among all of our tested nanocomposites, the highest Stern–Volmer quenching constant (KSV) was that obtained from the assembly of AuSCOOH with the homopolymer PBOT1. In addition, we developed fittable exponential equations to predict the values of KSV of other fluorescent polymers (containing various molar ratios of pyridyl conjugated units) when titrated with these NP quenchers. The morphologies observed in the TEM images confirmed that fluorescence quenching resulted from the self-assembly of the supramolecular nanocomposites, mediated by H-bonds between the fluorescent H-acceptors of the polymers and the H-donors of the Au NPs presenting acid-modified surfactants.  相似文献   

15.
The extent of intra‐ and interchain associations of (un)charged water‐soluble monomers in the homogeneous and micellar solutions was studied with steady‐state fluorescence spectroscopy. Fluorescence spectroscopic experiments were performed on uncharged (acryl amide) and charged hydrophilic monomers [zwitterionic 3‐dimethyl(methacryloyloxyethyl)ammonium propane sulfonate (DMAPS), etc.] with pyrene as a probe. In both the homogeneous and micellar solutions, linear Stern–Volmer plots were obtained that implied that the quenching process can be considered as totally dynamic. The Stern–Volmer constant (KSV) for DMAPS decreased with an increasing dielectric constant of solvent and the concentration of simple electrolyte. An abrupt decrease in KSV was observed in the presence of a small amount of anionic emulsifier [below the critical micelle concentration (cmc)]. The dependence of KSV on pH for DMAPS was described by a curve with a maximum at about pH = 7. This was interpreted in terms of segregation of DMAPS and the variation of a optimal microenvironment for the probe and quencher with pH. The quenching rate in the micellar solutions strongly increased above the cmc but was lower than that in the homogeneous solutions. In the micellar solutions (above the cmc), the microenvironment for an interaction between the probe and quencher was suggested to be the whole microdroplet. The dependence of KSV on pH for DMAPS is described by a curve with a maximum at about pH = 9.3. The synergistic effect arises from the segregation of charged quencher molecules within the microdroplets. The complex (or strong interaction) between quencher and additive(s) is supposed to increase the dynamic nature of microdroplets that provides an optimal microenvironment for probe and quencher. A good coemulsifier, however, removes quencher from the interface and creates a barrier for entering monomer (quencher) into the core of micelles; therefore, quenching is depressed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 571–581, 2003  相似文献   

16.
The interactions of the phenolic acids cinnamic acid (CNA), ferulic acid (FA), caffeic acid (CA) and chlorogenic acid (CLA) with bovine serum albumin (BSA) were investigated and compared using affinity capillary electrophoresis (ACE) and the fluorescence quenching methods. ACE gives binding constants (K b) and thermodynamic parameters. The thermodynamic parameters show that each of four phenolic acids bind to BSA mainly by hydrogen bonds, electrostatic and hydrophobic interactions. The fluorescence quenching method provided quenching constant K sv, binding site number n and K b. The fluorescence results indicate that BSA fluorescence quenching is mainly a static quenching process. The binding constants (K b) of CNA, FA, CA and CLA were from 2.52×104 to 7.90×104 L⋅mol−1 from ACE experiments and 1.19×104 to 5.21×104 L⋅mol−1 from fluorescence, their increase corresponded to the increase in the number of hydroxyl groups. These results imply that molecular structure and the number of hydroxyl groups of phenolic acids play act key roles in the affinity of natural phenolic acids towards BSA.  相似文献   

17.
The 5-methyl-1-(4-nitrophenyl)-1H-1, 2, 3-triazole-4-carboxylic acid (1) was synthesized by an improved method. By using the compound 1 as ligand, a new complex [Cu(L)2][Cu(L)2(H2O)2] (2) was prepared firstly under hydrothermal condition. Both 1 and 2 were all used as exclusive fluorescence sensor for 2, 4, 6-trinitrophenol (TNP) for the first time. The fluorescence exploration demonstrated that they exhibit highly selective and sensitive (KSV = 393685 M?1 and KSV = 213269 M?1, respectively) sensing to TNP from other nitro aromatic compounds (NACs) with high quenching efficiency QP value of 96.76% and 93.37%, as well as low detection limit (0.68 μM and 0.37 μM, respectively). It means that complex 2 had higher selectivity due to the less interference by 4-NT and 2-NP compared with 1. Moreover, the fluorescence quenching phenomenon of sensor 1 with TNP was analyzed by density functional theory (DFT).  相似文献   

18.
Two novel ID‐based water‐soluble conjugated polymers (+)‐PIDPV and (?)‐PIDPV were synthesized by Heck coupling reaction. These two polyelectrolytes are both consisted of isoindigo units and phenylenevinylene units. In the UV–vis absorption spectra, both (+)‐PIDPV and (?)‐PIDPV exhibit broad absorption bands that almost cover the whole visible region. Photophysical investigations reveal that the fluorescence of water‐soluble PPV can be efficiently quenched by oppositely charged PIDPV at a very low concentration. Cationic PPV shows an efficient quenching effect with ΚSV = 1.01 × 106 M?1 in the presence of (?)‐PIDPV while the anionic PPV gives a lager quenching constant with ΚSV = 1.71 × 106 M?1 in the presence of (+)‐PIDPV. Furthermore, the blend films of water‐soluble PPVs and oppositely charged PIDPV also exhibit excellent quenching effect. These properties suggest that (+)‐PIDPV and (?)‐PIDPV are promising materials in the application of ionic photoactive layer in the organic solar cells. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2223–2237  相似文献   

19.
When the Hammett-Taft equation log (k/ko)=ρq · σ is applied to the solvolysis of the 3-substituted propyl bromides 6a-6i in ethanol/water 4:1 (v/v) log k correlates linearly with σ except in cases where R exerts an anchimeric effect. The reaction constant ρq for 6 is ? 0.12 and is typical for a nucleophilic solvent-assisted ks process at a primary C-atom. The tertiary halides 1 and 3 , however, which react with little or no nucleophilic solvent assistance, i.e. by kc processes, lead to larger ρq values of ?0.71 and ?1.14, respectively. The reaction constant pq is therefore a sensitive gauge for charge development in the transition state for solvolysis of saturated compounds.  相似文献   

20.
Two iron(II) complexes, [FeII(pytBuN3)2](FeCl4) (1) and [FeII(pytBuMe2N3)Cl2] (2), with sterically constrained pytBuN3 and pytBuMe2N3 chelate ligands (pytBuN3 = 2,6-bis-(aldiimino)pyridyl; pytBuMe2N3 = 2,6-bis-(ketimino)pyridyl), have been synthesized and characterized by elemental analysis, IR, UV–vis spectra, and preliminary X-ray single-crystal diffraction. The latter revealed that Fe(II) in 1 is six-coordinate by six nitrogen donors from two bisiminopyridines in a distorted octahedron. Complex 2 reacts with thiourea with a second-order rate constant k2 = (2.50 ± 0.05) × 10?3 M?1 s?1 at 296 K, and the reaction seemed to be slow. In a similar way, the interaction of 2 and DNA was studied by fluorescence and absorption spectroscopy. The results revealed that 2 caused fluorescence quenching of DNA through a dynamic quenching procedure. The binding constants KA, Kapp, and KSV as well as the number of binding sites between 2 and DNA were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号