首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous graphene oxide/chitosan(PGOC) materials were prepared by a unidirectional freeze-drying method.Their porous structure,mechanical property and adsorption for metal ions were investigated.The results show that the incorporation of graphene oxide(GO) significantly increased the compressive strength of the PGOC materials.The saturated adsorption capacity of Pb2+ increased about 31%,up to 99 mg/g when 5 wt%GO was incorporated These biodegradable,nontoxic,efficient PGOC materials will be a potential adsorbent for metal ions in aqueous solution.  相似文献   

2.
Tarazi L  George A  Patonay G  Strekowski L 《Talanta》1998,46(6):1413-1424
The spectral features of the near-infrared (NIR) dye TG-170 in different solutions and its complexation with several metal ions were investigated. The absorbance maxima of the dye are at λ=819, 805, and 791 nm in dimethyl sulfoxide (DMSO), methanol, and a buffer of pH 5.9, respectively. These values match the output of a commercially available laser diode (780 nm), thus making use of such a source practical for excitation. The emission wavelengths of the dye are at λem =822, 812, and 803 nm in DMSO, methanol, and the buffer, respectively. The molar absorptivity and fluorescence quantum yield increase accordingly. The addition of either an Al(III) ion or Be(II) ion resulted in fluorescence quenching of the dye. The Stern–Volmer quenching constant, KSV, was calculated from the Stern–Volmer plot to be KSV=3.11×105 M−1 for the Al(III) ion and KSV=1.17×106 M−1 for the Be(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant, KS, of the metal–dye complex was calculated to be 4.37×104 M−1 for the Al–dye complex and 1.94×106 M−1 for the Be–dye complex.  相似文献   

3.
It is well-known that metal ion complexes are essential in various biological systems, including those with adenosine nucleotides which are substrates for a large number of enzymatic processes. The interactions of various metal ions with adenosine nucleotides have been intensively studied by multinuclear NMR spectroscopy. Nucleotides are polydentate ligands with various potential binding sites, including nitrogen atoms on the purine base, hydroxyl groups on the ribose sugar, and negatively charged oxygen atoms in the phosphate group. Depending on the experimental conditions (e.g. pH, concentration range, etc.) and on the size and nature of the metal ions, monodentate, or multidentate coordination to these donor atoms are possible. The review focuses on the applications of different NMR techniques in identifying the stoichiometry and the mode of metal binding in complexes formed with the most important adenosine nucleotides, like adenosine-5′-mono-, di- and triphosphates (AMP, ADP and ATP). Ligand exchange dynamics for some metal ion complexes are also presented.  相似文献   

4.
吕功煊 《分子催化》2011,(6):574-579
生物体内细胞在氧化物质的过程中释放出的大量自由能,这些能量先形成高能磷酸化合物三磷酸腺苷(adenosine 5′-triphosphate,ATP),当ATP水解为ADP(二磷酸腺苷,adenosine 5′-diphosphate)和无机磷酸时.  相似文献   

5.
Summary The influence of metal ions on -bromination and N-O bond reduction of 3,5-dimethylpyridine-N-oxide (2) in acetic acid is described.
Effekt von Metallionen auf die Bromierung von 3,5-Dimethylpyridin-N-oxid in Essigsäure (Kurze Mitt.)
Zusammenfassung Es wird der Einfluß von Metallionen auf die -Bromierung und die Reduktion der N-O-Bindung von 3,5-Dimethylpyridin-N-oxid in Essigsäure beschrieben.
  相似文献   

6.
A novel fluorescent ionophore derived from calix[4]arene and pyrazoline was designed and synthesized. Its molecular structure was confirmed by 1H NMR and element analysis. The resulting material shows specific fluorescent behavior toward the Zn2+ ion among the other divalent metal ions, such as Co2+, Ni2+, Cu2+. The primary results indicate this ionophore material is a potential material for developing efficient fluorescent Zn2+ chemosensors.  相似文献   

7.
In contemporary times, water resources have become increasingly scarce and suffer from anthropogenic pollution sources with an organic and inorganic origin that are products of industrial, agricultural, and everyday waste. Contamination with heavy metals and dyes in wastewater is considered a risk for water sources that can leak into underground and surface sources, leading to increased biological and chemical contamination. The pollutant removal process is performed by adsorption treatment methods, which is the most common method, and it is considered an effective method with a high and economical removal rate.In this review, we discuss the use of biobased hydrogel adsorbents in the removal of organic dyes and metal ions from water. The literature indicates that hydrogels exhibit rapid absorption kinetics and a dye removal absorption capacity that can reach more than 100 mg/g and sometimes more than 2000 mg/g, with a metal adsorption capacity ranging from 38 mg/g to more than 440 mg/g. These results are discussed and compared by taking into account hydrogel materials that contain biopolymers such as alginate, chitosan or both. In general, absorption depends mainly on biobased materials, which have a natural origin and can be utilized to synthesize hydrogels to remove pollutants, dyes and heavy metals. Chitosan and alginate are prominent materials for this use and they can be incorporated with other components to obtain hydrogels or nanocomposite materials with different efficacies to remove dyes and metal ions.  相似文献   

8.
Summary Equilibria occurring during the dynamic ion exchange separation of metal ions were examined, and their effect on the chromatography of the metal ions was evaluated. Bonded reversed-phase silica, pure organic reversed phase, and silica columns were used to differentiate between the role of silica and the reverse phase. The results show that system peaks had the most important influence on the applicability of dynamic exchangers to quantitative metal ion determinations. The response of system peaks to sample composition (pH, ionic strength, matrix effects) was complicated and could not be predicted easily. Equilibria effects that can cause analytical errors were identified and recommendations for elimination of such errors are given.Dedicated to Professor S. R. Lipsky on the occasion of his 60th birthday.  相似文献   

9.
Two new stable chelating resins have been synthesized incorporating the imidazolylazobenzene and 1,4-bis(imidazolylazo)benzene as functional group into Merrifield polymer through CN covalent bond and characterized by elemental analyses, IR and thermal study. A comparison of sorption capacity of newly formed resins towards the cations Ag(I), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) as a function of pH has been studied. Kinetic studies show the time for the completeness of metal ion saturation with the resin phase. Cd(II) in trace quantities has been successfully separated and determined in different biological samples and Zn(II) in medicinal samples. It is also found that Cd(II) can be removed from water at usual pH of natural water. Both the resins can be employed for water purification as the resins reveal sorption ability towards toxic metal ions and exhibit no affinity to alkali or alkaline earth metal ions.  相似文献   

10.
《中国化学快报》2020,31(6):1625-1629
Graphene oxide(GO),an important chemical precursor of graphene,can stably disperse in aqueous surrounding and undergo aggregation as metal cations introduced.The usual instability of GO with ions is caused by the shielding effect of ions and crosslinking between GO and ions.However,the dynamic stability of GO under ions exchange still remains unclear.Here,we investigated the dynamic dispersion stability of GO with metal ions and observed a redispersion behavior in concentrated Fe~(3+) solution,other than permanent aggregation.The exchange with Fe~(3+) ions drives the reversion of zeta(ζ) potential and enables the redispersion to individual GO-Fe~(3+) complex sheets,following a dynamic electric double layer(EDL) mechanism.It is found that the specifically strong electrostatic shielding effect and coordination attraction between Fe~(3+) and functional oxygen groups allows the selective redispersion of GO in concentrated Fe~(3+) solution.The revealed dynamic dispersion stability complements our understanding on the dispersive stability of GO and can be utilized to fabricate graphene-metal hybrids for rich applications.  相似文献   

11.
The citrate-capped Au nanoparticles were found to undergo pH-dependent aggregation induced by Cu2+ ions. At low pH value (8.9), the Au nanoparticles aggregated into fractal-like structure induced by the coordination interactions between the carboxyl groups of citrate ligands and Cu2+ ions. At high pH value (10.1), the Au nanoparticles aggregated into close-packed structure attributed to the increased concentration of hydroxyl groups. The coordination interactions between the metal ions and the ligands were suppressed as a result of the competition effect of the hydroxyl groups with the carboxyl groups. The aggregation process was identified to be dominated by the cluster–cluster mechanism at the low pH value and the particle–cluster mechanism at the high pH value.  相似文献   

12.
13.
Summary The optimization of chromatographic methods for the determination of metal species require an understanding of the mechanisms involved. In this work, the separation of Cd, Co, Cu, Fe(II/III), Mn, Pb and Zn using a mixed bed column (IonPac CS5A) and a cation-exchange column (IonPac CS2) is studied as a function of mobile phase composition. The type and concentration of complexing agent and of ionic strength modificators were evaluated. The charge of analytes were calculated using the classical ion exchange approach to highlight the effect of eluent composition on retention. The comparative study enabled us to identify an optimal eluent composition for the separation of the nine metal species.  相似文献   

14.
15.
Malik AK  Kaur V  Verma N 《Talanta》2006,68(3):842-849
This paper reviews the practical applications of solid phase microextraction-High performance liquid chromatography in the analysis of toxic metal species as these are important contaminants and are carcinogenic. Their determination in formulations, in feed and food, and in complex environmental matrices (e.g., waste water and industrial effluents) often requires analytical methods capable of high efficiency, unique selectivity, and high sensitivity. Solid phase microextraction (SPME) requires low solvent consumption and is quick in use. SPME is used for extraction and online desorption of analytes with the mobile phase of HPLC and subsequent detection by UV, ICP-MS or ESI-MS as detectors. Different SPME-HPLC methods are summarized in this article to demonstrate the usefulness of this technique for metallic species of As, Cr, Pb, Hg and Se.  相似文献   

16.
A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L−1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g−1 for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL−1 for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n = 8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.  相似文献   

17.
The influence of metal ions on hydrogen bonds formed by their ligands to other molecules is studied at the example of the water dimer and lithium ion by means of ab initio calculations using a 8s/4p + P Gaussian basis set. Potential curves for the dimer separation and proton transfer are reported, and the results are used to discuss the ion influence on structure, rotation and the first part of the autoprotolysis reaction of the dimer. Several properties of electrolyte solutions can be related to the principal effects predicted by our calculations.  相似文献   

18.
Fujiyoshi R  Katayama M 《Talanta》1995,42(12):1931-1935
Metal exchange reactions of acetylacetonate complexes with Cd(II), Cu(II) and Zn(II) ions were investigated by using cadmium and copper ion selective electrodes. Changes in the electrode potential and pH of the solutions were monitored upon adding the pertinent metal Zn(II) of the acetylacetonate (AA) complexes. In the reverse system in which a stable Cu-AA complex exists in the solution prior to adding a secondary metal ion (Cd(II) or Zn(II)), no Cu(II) was replaced by either ion. In the systems containing Cd(II) and Zn(II) as a complexed form with AA or as free ions, the exchange reactions were not explained by considering the equilibrium stability constants of the Cd-AA and Zn-AA complexes.  相似文献   

19.
聚丙烯酰胺(HPAM)是油田常用的驱油聚合物,用油田污水配制HPAM溶液易导致其黏度明显降低,影响驱油效果。依据埕东油田污水实测的各种金属阳离子含量来配制HPAM溶液,测得各金属阳离子对其黏度影响由大到小的顺序为:Na+>Fe2+>Ca2+>K+>Mg2+;通过红外光谱和扫描电镜分析金属阳离子导致HPAM溶液降黏的机理,Na+、K+、Ca2+、Mg2+主要是通过与HPAM链上的羧酸根阴离子静电引力相互作用,降低HPAM分子表面原有的电荷密度,造成分子链卷曲,同时减弱了极性基团的溶剂化能力,释放大量的"束缚水",从而使黏度显著降低;Fe2+离子主要是与水中溶解氧共同作用,引发自由基反应,导致HPAM骨架水解断裂,致使黏度显著降低。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号