首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel technique was used to fabricate three-dimensional photonic crystals with superlattices. The super structure was fabricated by assembling monodispersed microspheres in the grooves of the scales of morpho butterfly, which makes the photonic crystal being composed of two kinds of different photonic structures (natural groove structure of butterfly wing and artificial microspherical colloids arrangement). The superstructural photonic crystal exhibits some unique optical properties different from both the butterfly wing and the colloidal crystal. The approach exhibited here provides a new way for fabricate photonic crystals with superlattices.  相似文献   

2.
1. INTRODUCTION The very latest subject of physics to surface in biology is the photonic crystal, which is ordered, subwavelength structured material capable of controlling the propagation of light in the similar manner as which atomic crystal control electrons [1,2]. Due to the application of the photonic crystal in laser, integrated optical circuit, it attracted great attention in the past decade. Photonic crystals can be fabricated by microfabrication methods, holographic methods, and c…  相似文献   

3.
以改进的对流自组装方法制备层数可控的胶体光子晶体, 并通过各向同性氧等离子体(O2 Plasma)刻蚀构造出梯度结构, 进一步通过金(Au)及无定形硅(Si)的可控沉积调节梯度结构胶体光子晶体的光子禁带, 并将该梯度结构用于罗丹明B的荧光发射增强.  相似文献   

4.
Unlike absorption-based colors of dyes and pigments, reflection-based colors of photonic crystals, so called “structural colors”, are responsive to external stimuli, but can remain unfaded for over ten million years, and therefore regarded as a next-generation coloring mechanism. However, it is a challenge to rationally design the spectra of structural colors, where one structure gives only one reflection peak defined by Bragg's law, unlike those of absorption-based colors. Here, we report a reconfigurable photonic crystal that exhibits single-peak and double-peak structural colors. This photonic crystal is composed of a colloidal nanosheet in water, which spontaneously adopts a layered structure with single periodicity (407 nm). After a temperature-gradient treatment, the photonic crystal segregates into two regions with shrunken (385 nm) and expanded (448 nm) periodicities, and thus exhibits double reflection peaks that are blue- and red-shifted from the original one, respectively. Notably, the transition between the single-peak and double-peak states is reversible.  相似文献   

5.
Reflectance spectroscopy is utilized to monitor structural changes during the self-assembly of a monodisperse colloidal system at the meniscus of a sessile drop on an inert substrate. Treating the ordered colloidal structure as a photonic crystal is equivalent to monitoring the changes in the photonic band gap (PBG) as the colloidal system self-assembles heterogeneously into a crystal through solvent evaporation in ambient conditions. Using a modified Bragg's law model of the photonic crystal, we can trace the structural evolution of the self-assembling colloidal system. After a certain induction period, a face-centered cubic (FCC) structure emerges, albeit with a lattice parameter larger than that of a true close-packed structure. This FCC structure is maintained while the lattice parameter shrinks continuously with further increase in the colloidal concentration due to drying. When the structure reaches a lattice parameter 1.09 times the size of that of a true close-packed structure, it undergoes an abrupt decrease in lattice spacing, apparently similar to those reported for lattice-distortive martensitic transformations. This abrupt final lattice shrinkage agrees well with the estimated Debye screening length of the electric double layer of charged colloids and could be the fundamental reason behind the cracking commonly seen in colloidal crystals.  相似文献   

6.
采用光固化技术, 以丙烯酰胺单体与亚甲基双丙烯酰胺交联剂在紫外光的照射下发生光聚合反应, 嵌入聚苯乙烯胶体晶体, 实现了胶体晶体的固定化. 结合反射光谱和Kossel衍射技术研究对照了固定化前后胶体晶体的变化, 实验结果表明, 通过这种水凝胶固定化的胶体晶体保存了未固定前悬浮液中胶体晶体的结构. 但固定化后的胶体晶体的晶面间距和晶体的尺寸都略微减小. 通过对固定化后的水凝胶长时间的反射光谱观测, 发现固定化后胶体晶体在Milli-Q水中起初会发生溶胀, 经过2-5天溶胀-消溶胀过程达到平衡, 平衡后的水凝胶胶体晶体十分稳定, 可以长时间保持胶体晶体的结构. 因此, 胶体晶体固定化不但极大地提高了悬浮液中胶体晶体的抗剪切能力, 还克服了悬浮液中胶体晶体对离子、外界干扰的敏感性, 扩大了胶体晶体的实际应用价值.  相似文献   

7.
Self-assembled colloidal crystals have attracted major attention because of their potential as low-cost three-dimensional (3D) photonic crystals. Although a high degree of perfection is crucial for the properties of these materials, little is known about their exact structure and internal defects. In this study, we use tomographic scanning transmission X-ray microscopy (STXM) to access the internal structure of self-assembled colloidal photonic crystals with high spatial resolution in three dimensions for the first time. The positions of individual particles of 236 nm in diameter are identified in three dimensions, and the local crystal structure is revealed. Through image analysis, structural defects, such as vacancies and stacking faults, are identified. Tomographic STXM is shown to be an attractive and complementary imaging tool for photonic materials and other strongly absorbing or scattering materials that cannot be characterized by either transmission or scanning electron microscopy or optical nanoscopy.  相似文献   

8.
胶体晶体研究进展   总被引:3,自引:0,他引:3  
重点阐述了有关胶体晶体的制备方法、以胶体晶体为模板制备的大孔材料,以及利用胶体晶体的三维有序结构、结构颜色等特性制备光子晶体、传感器等研究的进展。  相似文献   

9.
Three-dimensional photonic crystals made of close-packed polymethylmethacrylate (PMMA) spheres or air spheres in silica, titania and ceria matrices have been fabricated and characterized using SEM, XRD, Raman spectroscopy and UV–Vis transmittance measurements. The PMMA colloidal crystals (opals) were grown by self-assembly from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centred cubic (fcc) array, and UV–Vis measurements show that the colloidal crystals possess pseudo photonic band gaps in the visible and near-IR regions. Inverse opals were prepared by depositing silica (SiO2), titania (TiO2) or ceria (CeO2) in the voids of the PMMA colloidal crystals using sol-gel procedures, then calcining the resulting structure at 550 °C to remove the polymer template. The resulting macroporous materials showed fcc ordering of air spheres separated by thin frameworks of amorphous silica, nanocrystalline titania or nanocrystalline ceria particles, respectively. Optical measurements confirmed the photonic nature of the inverse opal arrays. UV–Vis data collected for the opals and inverse opals obeyed a modified Bragg’s law expression that considers both diffraction and refraction of light by the photonic crystal architectures. The versatility of the colloidal crystal template approach for the fabrication of macroporous oxide structures is demonstrated.  相似文献   

10.
We have studied the assembly of 3-D colloidal crystals from binary mixtures of colloidal microspheres and highly charged nanoparticles on flat and epitaxially patterned substrates created by focused ion beam milling. The microspheres were settled onto these substrates from dilute binary mixtures. Laser scanning confocal microscopy was used to directly observe microsphere structural evolution during sedimentation, nanoparticle gelation, and subsequent drying. After microsphere settling, the nanoparticle solution surrounding the colloidal crystal was gelled in situ by introducing ammonia vapor, which increased the pH and enabled drying with minimal microsphere rearrangement. By infilling the dried colloidal crystals with an index-matched fluorescent dye solution, we generated full 3-D reconstructions of their structure including defects as a function of initial suspension composition and pitch of the patterned features. Through proper control over these important parameters, 3-D colloidal crystals were created with low defect densities suitable for use as templates for photonic crystals and photonic band gap materials.  相似文献   

11.
High-quality polystyrene (PS) colloidal photonic crystals in large area were fabricated in 24 h via a capillary-enhanced process. Then, the photonic crystals with core-shell structure were obtained by incorporating silica nanoparticles into the interstitial space of opal template via a dipping process. The filling ratio (Vsilica) of interstitial space could be manipulated by dipping colloidal crystals into suspensions with different concentrations of silica nanoparticles, which in turn renders the obtained core-shell photonic crystals. The absorptive peak of opal without dipping process is at 445 nm as measured by UV–vis spectrometry. The filling ratios of 0.130, 0.167 and 0.253 can be calculated according to the modified Bragg's Law, which corresponds to the absorptive peaks for core-shell opals at 453, 463 and 469 nm obtained from suspensions with silica nanoparticles of 0.017, 0.122, and 0.244 wt%, respectively. Therefore, by using this dipping process, the characteristic absorption wavelength for photonic crystal will be varied easily, efficiently and cost effectively than that by traditional methods for constructing opal from monodispersed colloids of different diameters.  相似文献   

12.
An array of the colloidal photonic crystals was directly fabricated using an ink-jet printing. The colloidal ink droplets containing the monodispersed polystyrene latex particles were selectively deposited on a hydrophobic surface. Solvent evaporation from each ink droplet leads to a formation of microdome-shaped colloidal assembles of close-packed structures. Microspectroscopic analysis has confirmed that the individual assembly serves as a photonic crystal and its optical properties can be correlated with the microstructural features. Unlike other techniques of patterned growth of colloidal photonic crystal, the substrate does not need to be patterned first and no template is needed in the direct writing by the ink-jet printing. Using our strategy, we have rapidly produced the colloidal photonic crystal microarrays composed of different-sized spheres addressably patterned on the same substrate.  相似文献   

13.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

14.
采用流动控制沉积法, 通过调控泵速和聚甲基丙烯酸甲酯(PMMA)胶体微球溶液的浓度, 制备出微球排列高度有序且薄膜紧密附着于基底的高质量光子晶体薄膜. 获得了制备高质量PMMA光子晶体薄膜的组装条件范围, 发现在该条件范围内, 当泵速或胶体微球溶液浓度一定时, PMMA光子晶体薄膜的厚度随胶体微球溶液浓度的增加或泵速的降低而增加. 研究了组装条件对PMMA光子晶体薄膜光学性能的影响, 发现光子禁带位置随光子晶体薄膜厚度增加或减少而红移或蓝移. 在此基础上, 控制组装条件得到了不同尺寸微球堆叠而成的叠层光子晶体薄膜, 并研究了其光学性能的变化规律. 结果显示, 叠层光子晶体薄膜的光子禁带峰为各层叠层光子晶体禁带峰的简单叠加, 且峰强度受光入射角方向影响.  相似文献   

15.
韩国志  朱沈  吴生蓉  庞峰飞 《化学学报》2012,70(17):1827-1830
将胆甾相液晶填充进胶体晶体内部空隙, 通过胆甾相液晶与胶体晶体的耦合, 构建了一种新型可调制液晶光子晶体. 填充于胶体晶体内部的胆甾相液晶织构呈现典型的手性近晶相(S)特征. 由于胆甾相液晶具有特定的选择性反射, 当胶体晶体的带隙处于胆甾相液晶的反射波长范围之内, 则随着温度的改变, 胶体晶体的带隙与胆甾相液晶的带隙同时发生蓝移. 在一定温度条件下, 胆甾相液晶的带隙将与胶体晶体的带隙发生耦合, 实现了光子晶体带隙在单峰与双峰之间的可逆切换.  相似文献   

16.
Two types of non-close-packed colloidal crystal films were prepared by etching the films made of polystyrene nanospheres using a hyperthermal neutral beam of oxygen gas. Etching without sintering above glass transition temperature of the polymer particles resulted in the non-close-packed structure of the nanospheres, in which polystyrene nanospheres in different lattice planes touched each other due to the reduction in the size of the nanospheres that occurred during the etching process. In contrast, a different non-close-packed structure with inter-connecting networks between etched nanospheres was generated by annealing of the colloidal crystal and a subsequent etching process. The photonic bandgap could be tuned during this dry etching of colloidal photonic crystals. This connected open structure could be used as a template for a silica inverse opal by chemical vapor deposition. An alternative dry etching process, reactive ion etching, mainly affected the morphology of particles near the top surface, and only a slight change in the stop band position of the colloidal crystal film was observed.  相似文献   

17.
Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition wereprepared by using two methods: post-modification of the template-synthesized structured polymers and template-polymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fastpH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogelson controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO_2 in the region containing acid groups, which allowedduplicating inorganic colloidal crytals from colloidal crystal hydrogels (or macroporous products from macroporoushydrogels) via one step duplication.  相似文献   

18.
A convenient approach was developed to fabricate monodisperse nigrosine-doped poly(methyl methacrylate-co-divinylbenzene-co-methacrylic acid) nanoparticles with different cross-linkage by soap-free emulsion polymerization at boiling status and swelling process. The dye-doped nanoparticles were used for the fabrication of colloidal crystal films and beads. It was found that nigrosine dye in the nanoparticles can efficiently depress the light scattering inside the colloidal crystal films and eliminate the iridescent effect in the photonic beads. These results make the colloidal crystals useful in photonic paper, bioassay, and so on.  相似文献   

19.
We report the formation of a new class of supported membranes consisting of a fluid phospholipid bilayer coupled directly to a broadly tunable colloidal crystal with a well-defined photonic band gap. For nanoscale colloidal crystals exhibiting a band gap at the optical frequencies, substrate-induced vesicle fusion gives rise to a surface bilayer riding onto the crystal surface. The bilayer is two-dimensionally continuous, spanning multiple beads with lateral mobilities which reflect the coupling between the bilayer topography and the curvature of the supporting colloidal surface. In contrast, the spreading of vesicles on micrometer scale colloidal crystals results in the formation of bilayers wrapping individual colloidal beads. We show that simple UV photolithography of colloidal crystals produces binary patterns of crystal wettabilities, photonic stopbands, and corresponding patterns of lipid mono- and bilayer morphologies. We envisage that these approaches will be exploitable for the development of optical transduction assays and microarrays for many membrane-mediated processes, including transport and receptor-ligand interactions.  相似文献   

20.
Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号