首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a series of the anionic detergents, sodium n-alkyl sulfate (n-alkyl = n-hexyl, n-octyl, n-decyl, n-dodecyl, n-hexadecyl, and n-octadecyl), on a cover glass have been observed. The broad ring patterns of the hill accumulated with the detergent molecules are formed around the outside edges in the macroscopic scale. The microscopic patterns of the small blocks, star-like patterns, and branched strings are formed. The pattern area and the time for the dryness have been discussed as a function of detergent concentration and the number of carbons of the detergents. The convection flow of water accompanied by the detergent molecules, change in the contact angles at the drying frontier between the solution and substrate in the course of dryness, and interactions among the detergents and substrate are important for macroscopic pattern formation. Microscopic patterns are determined mainly by the shape and size of molecules, translational Brownian movement of detergent molecules, and the electrostatic and hydrophobic interactions between detergents and/or between the detergent and substrate in the course of solidification.  相似文献   

2.
Macroscopic and microscopic dissipative structural patterns form in the course of drying a series of aqueous solutions of polyoxyethylenealkyl ethers. The shift from the single round hill with accumulated surfactant molecules to the broad ring patterns of the hill in a macroscopic scale occurs as the HLB (hydrophile-liophile balance) of the surfactant molecules increases. The patterns correlate intimately with the HLB values of the surfactants. Microscopic patterns of small blocks, starlike patterns, and branched strings are formed. The size and shape of the surfactant molecules themselves influence the drying patterns in part. The pattern area and the time to dryness have been discussed as a function of surfactant concentration and HLB of the surfactants. The convection flow of water accompanying the surfactant molecules, the change in the contact angles at the drying frontier between solution and substrate in the course of dryness, and interactions among the surfactants and substrate are important for the macroscopic pattern formation. Microscopic patterns are determined in part by the shape and size of the molecules, translational Brownian movement of the surfactant molecules, and the electrostatic and hydrophobic interactions between surfactants and/or between the surfactant and substrate in the course of solidification.  相似文献   

3.
Macroscopic and microscopic dissipative structural patterns are formed in the course of drying a suspension of Chinese black ink on a cover glass and in a dish. The time for the drying and the pattern area increased as the particle concentration increased. The broad ring patterns of the hills accumulated with the particles formed around the outside edges on a macroscopic scale. The height and the width of the broad ring increased as the particle concentration increased. The spokelike patterns of the rims accumulated with particles were also formed on a macroscopic scale. Microscopic patterns of colloidal accumulation were observed over the whole region of the pattern area. Various types of convection cells were observed on a cover glass and in a dish at 25–80 °C. A time-resolved observation of the drying process was also made. The convections of water and the colloidal particles at different rates under gravity and the translational and rotational Brownian movement of the particles were important for the macroscopic pattern formation. Microscopic patterns were determined by the translational Brownian diffusion of the particles and the electrostatic and the hydrophobic interactions between the particles and/or between the particles and the cell wall in the course of the solidification of the particles.  相似文献   

4.
Drying dissipative structural patterns of aqueous solutions of poly (4-vinyl-N-alkyl-pyridinium halide) were studied on a cover glass. The broad rings were observed at the outside edge of the dried film. The broad ring size (or the area of the dried film, S) increased as polymer concentration increased. The broad ring size decreased and then turned to increase when the hydrophobicity of the polymers increased. The drying time from the initial liquid (T) was insensitive to the polymer concentration. But, T was sensitive to the kind of polymers, i.e., hydrophobicity of polycations, and roughly in the opposite order to that of S. Spoke-like macroscopic patterns appeared clearly for poly (4-vinyl-N-n-butylpyridinium bromide) (C4PVP), but were not observed clearly for the other polymers. Cross-like microscopic patterns appeared from which the polymers with the extended conformation are deduced to be crystallized during the course of dryness. The cooperative crystallization took place between the polymer and the salt in the C4PVP + KCl mixtures. When two different polymers were mixed, segregation and then independent crystallization of each single component polymers were observed. The dissipative effect is important for determining of the polymer crystal structure during the course of crystallization.  相似文献   

5.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a deionized aqueous solution of cationic polyelectrolyte, poly(allylamine hydrochloride) on a cover glass have been observed. Drying times range from 40 min at 45 °C to 450 min at 5 °C, and are insensitive to the polymer concentration. Pattern area shrinks toward the center at the low polymer concentrations, and increases as the concentration increases. A macroscopic broad ring pattern, where the polymer accumulates densely, forms in many cases. Beautiful fractal patterns are observed at the microscopic scale. The fractal dimension increases from 1.2 to 1.6 as polymer concentration increases from 10-6 monoM to 10-2 monoM. The relative rates between the water flow at the drying front and the convection flow of water accompanying the movement of polymer are important for the macroscopic and microscopic pattern formation.  相似文献   

6.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a series of poly (ethylene glycol) (PEG) having molecular weights ranging from 1,000 to 2×106 in aqueous solution have been studied on a cover glass. The broad ring patterns of the hill accumulated with the polymers are formed irrespective of the molecular weights of PEG molecules. The single round hills are formed also in the center in the macroscopic scale, when the molecular weight is large. The characteristic convection flow of the polymers and the interactions among the polymers and substrate are important for the macroscopic pattern formation. Cross-like fractal patterns are observed, especially for the diluted solutions in the microscopic scale. These patterns are determined mainly by the electrostatic and polar interactions between the polymers and/or between the polymer and the substrate in the course of solidification. Interestingly, these microscopic patterns are reflected based on the shape and size of the PEG polymers.  相似文献   

7.
Convectional, sedimentation, and drying dissipative structural patterns formed during the course of drying aqueous colloidal crystals of silica spheres (183 nm in diameter) have been studied in a glass dish and a watch glass. Spoke-like convectional patterns were observed in a watch glass. The broad ring sedimentation patterns formed especially in a glass dish within 30–40 min in suspension state by the convectional flow of water and colloidal spheres. The macroscopic broad ring drying patterns formed both in a glass dish and a watch glass. The ratio of the broad ring size in a glass dish against the initial size of suspension, i.e., inner diameter of the glass dish, d f/d i, in this work, were compared with previous work of other silica spheres having sizes of 305 and 560 nm and 1.2 μm in diameter. The d f/d i values in a glass dish increased as sphere concentration increased, but were rather insensitive to colloidal size. The d f/d i values on a watch glass also increased as sphere concentration increased, and further increased as sphere size decreased. Segregation effect by sphere size in a watch glass takes place by the balancing between the upward convectional flow of spheres in the lower layers of the liquid and the downward sedimentation of spheres. Colorful microscopic drying patterns formed both in a glass dish and a watch glass.  相似文献   

8.
Electrospray ionization mass spectrometry (ESI‐MS) is very often employed to study metal/ligand equilibria in aqueous solution. However, the ionization process can introduce perturbations which affect the speciation results in an unpredictable way. It is necessary to identify these perturbations in order to correctly interpret the ESI‐MS speciation results. Aluminium(III)/1,6‐dimethyl‐4‐hydroxy‐3‐pyridinecarboxylate (DQ716) aqueous solutions at various pH were analysed by ESI‐MS, and speciation results were compared with those obtained by equilibrium techniques. Differences observed were both qualitative and quantitative. The ESI‐MS spectral changes due to different settings of the following instrumental parameters were analyzed: the solution flow rate (FS), the nebulizer gas flow rate (FG), the potential applied at the entrance capillary (EC), and the temperature of the drying gas (TG). The effects produced by FS and EC on the spectra strongly suggest the key role of surface activity in determining the relative fraction of the ions reaching the detector. The experimental effects of FS and TG were interpreted considering the presence of at least two reactions in the gas phase and a dimerization occurring in the droplets. These perturbations cannot be generalized because they appear to be chemical system‐related and instrument‐dependent. Therefore, the identification of perturbations is a required task for any metal‐ligand equilibrium study performed by ESI‐MS. Our results indicate that perturbations can be identified by evaluating the effects produced in the spectra by a change of instrumental parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The drying dissipative patterns of aqueous solutions of simple electrolytes, KCl, NaCl, CaCl2, and LaCl3, were observed on a cover glass. The macroscopic broad rings were formed at the outside edge of the drying film area, which shrunk from the initial solution area especially at low salt concentrations. The drying area and the broad ring size decreased as the salt concentration decreased. The microscopic block-like and dendritic cross-like patterns were observed for all the salts. Size of single crystals dried on a cover glass increased as salt concentration increased. The drying patterns of the binary mixtures of the salts were also observed. Size of the broad ring increased sharply by mixing. The microscopic patterns were, on the other hand, insensitive to the mixing.  相似文献   

10.
The structures of isotopomers of conformationally flexible acetyl chloride molecule, CH3COCl and CD3COCl, in the ground (S0 and lowest excited singlet (S1) and triplet (T1) electronic states were calculated by the RHF, MP2, and CASSCF methods. The equilibrium geometric parameters and harmonic vibrational frequencies of the molecules in these electronic states were estimated. According to calculations, electronic excitation causes considerable conformational changes involving rotation of the CH3 (CD3) top and a substantial deviation of the CCOCl fragment from planarity. The results of calculations agree with experimental data. Two dimensional torsional inversion sections of the potential energy surface were calculated and analyzed. Vibrational problems for large amplitude vibrations (torsional vibration in the S0 state and both torsional and inversion vibrations in the T1 and S1 states) were solved in one- and two-dimensional approximations.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 62–70, January, 2005.  相似文献   

11.
Densities of solutions of tetramethyl-bis-urea (TMbU) or “Mebicarum” in H2O and D2O, with solute mole fraction concentrations (x 2) ranging up to 3.2 × 10−3, have been measured at 288.15, 298.15, 308.15 and 318.15 K using a precision vibrating-tube densimeter. The limiting apparent molar volumes, V φ,2 , and expansibilities, E p, φ, 2 , of the solute have been calculated. The isotope effect δ V φ,2 (H2O → D2O;T) is negative, monotonously decreases in magnitude with temperature and reverses sign at T ≈ 318 K. Water (H2O, D2O) and TMbU molecules in infinitely- and highly-dilute aqueous solutions form H(D)-bonded hydration complexes with a high packing density. The hydration of TMbU should be treated as a superposition of two mechanisms, hydrophobic and hydrophilic, with the latter one predominating.  相似文献   

12.
We continue our use of “simple” energetic patterns, where simple means the use of parameters derived only from the stoichiometry of these species in our studies of the entropy of formation (TΔf S o) of aqueous anions. Relationships between the entropy of formation and different parameters such as the number of oxygen atoms, the natural logarithm of the molecular weight and the total number of atoms are explored. The charge of the species, z− continues to be explicitly considered where we now explore various choices of p and use of z p as a parameter.  相似文献   

13.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solutions of α-cyclodextrin (αCD), β-cyclodextrin (βCD), and γ-cyclodextrin (γCD), i.e., cone shape oligomers of polysaccharide. For all CD molecules, two kinds of macroscopic patterns, outside and inner broad rings and spoke lines formed. Multi-broad rings were formed for βCD in the inner region of the main broad ring at the outside edge especially at the high concentrations. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of rod-like and/or sward-like crystals were observed mainly in the direction along the spoke lines. The microscopic patterns of βCD were similar to those of some of polysaccharides and polynucleotides the authors studied previously. α- and γ-cyclodextrins were slightly hygroscopic, and clear-cut drying patterns were not observed.  相似文献   

14.
Abstract— Ab initio configuration interaction wavefunctions and energies are reported for the ground state and many low-lying excited singlet and triplet states of ethyl pheophorbide a (Et-Pheo a) and ethyl chlorophyllide a (Et-Chl a), and are employed in an analysis of the electronic absorption spectra of these systems. In both molecules the visible spectrum is found to consist of transitions to the two lowest-lying 1(π, π*) states, S1 and S2. The configurational compositions of S1 and S2 in both molecules are similar, and are described qualitatively in terms of a four-orbital model. The S1← S0 transition in each case is predicted to be intense, and is largely in-plane y-polarized, while the S2 S0 transition is predicted to be extremely weak and in-plane polarized. The orientation of the S2 S0 transition dipole is not conclusively established in the present calculations. The Soret band in both molecules is composed of transitions to no less than ten states (S3-S12 in Et-Chl a and S3-S7S9-S12. and S14 in Et-Pheo a), which exhibit primarily (π, π*) character. The configurational compositions of these states are generally a complex mixture of excitations from both occupied macrocyclic π molecular orbitals and occupied orbitals with electron density in the cyclopen-tanone ring and the carbomethoxy chain. No clear correspondences are evident between respective Soret states of the two systems. Transitions to these states are generally intense and display a variety of in-plane polarizations. Two additional Soret states of Et-Pheo a, S8 and S13, exhibit primarily (n. π*) character. S8 is characterized by excitations from u and non-bonding regions of the carbomethoxy chain, while S13 is described by n →π* excitations involving the nitrogen atom of ring II. No corresponding (n, π*) states were found for Et-Chl a. In both molecules the lowest two triplet states, T1 and T2, are found to lie lower in energy than S1. while T, and S1 are approximately degenerate. The configurational compositions of T1-T4 of both molecules are nearly identical, and may be described by a four-orbital model. However, the compositions of T1-T4 differ sharply from those of S1 and S2. A number of higher-lying 3(π, π*) states of both molecules (T5-T13 in Et-Chi a and T8-T9, T11-T13 in Et-Pheo a) are found to have energies similar to the singlet Soret states, relative to S0. They are characterized by a complex mixture of configurations which do not include significant contributions involving the four-orbital model. In addition, two 3(n, π*) states of Et-Pheo a, T10 and T14, are found, which are somewhat analogous to S8 and S13. Additional data presented include the charge distributions and molecular dipole moments of the S0. S1, and T1 states of both molecules, as well as energies and oscillator strengths of computed Sn←S1 and Tn1 transitions.  相似文献   

15.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

16.
Summary The interaction of sodium decane sulfonate and sodium dodecyl sulfate with sodium and calcium montmorillonite was investigated byx-ray diffraction. Sorption of detergent by clay was calculated from the decrease in detergent concentration and from carbon analysis of the solids.The two detergents did not interact with sodium montmorillonite either below or above their critical micelle concentrations. Calcium montmorillonite sorbed both detergents, but metathesis, leading to the precipitation of some calcium alkyl sulfate and sulfonate, and hydrolysis of dodecyl sulfate complicated the situation.Thex-ray patterns of calcium montmorillonite treated with detergent solutions and dried contained two sets of (00l) reflections. One, rather broad, belonged to unmodified clay. Like untreated dry clay, its basal spacing increased by 6 Å on exposure to 85% relative humidity, owing to insertion of two monolayers of water between adjacent clay lamellae. The other set consisted of narrow reflections; their basal spacing, which did not increase on exposure to 85% relative humidity, exceeded that of unmodified clay by a distance equal to the extended length of the C10H21SO3- and C12H25OSO3-anions, respectively. Therefore, the sorbed, intercalated detergent molecules were fully extended, with their chain axis perpendicular to the plane of the clay lamellae.Sorption may have occurred in two steps: (1) binding of alkyl sulfonate and sulfate anions by calcium counterions of the clay, followed by (2) sorption of sodium alkyl sulfonate and sulfate molecules by association between their hydrocarbon tails and those of previously sorbed detergent anions throughvan der Waals forces.
Zusammenfassung Die Aufnahme von Natriumdecylsulfonat und Natriumdodecylsulfat in Natrium- und Calcium-Montmorillonit wurde durch Analyse der Gleichgewichtslösungen und der Bodenkörper untersucht. Aus röntgenographisch bestimmten Schichtabständen wurde auf die Anordnung der Detergentienmoleküle im Schichtzwischenraum geschlossen.


With 5 tables  相似文献   

17.
Macro- and microscopic drying patterns were observed on a cover glass and a watch glass during the course of dryness of aqueous solutions of a series of n-alkyltrimethylammonium bromides (alkyl: n-decyl, n-dodecyl, n-tetradecyl, and n-hexadecyl). The broad rings formed at the outside edges of the macroscopic patterns. Size of the initial liquid on the substrates, d i, that of the final broad ring, d f, and the ratio, d f/d i, changed as the surfactant concentration changed, and there appeared a bending point in each curve, which was found to correspond to the critical micelle concentration (cmc) of the surfactant. The cmc values evaluated from the d i, d f, and d f/d i values agreed well with the reference values reported previously. Cooperative drying processes of the convection, sedimentation, and solidification were supported. Microscopic drying patterns such as rod-like, dendritic, and granule-like patterns were observed, and they changed as a function of the carbon number of the alkyl groups, surfactant concentration, and the distance from the center of the pattern.  相似文献   

18.
The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4‐tert‐butyl‐4′‐methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR Bmin signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the 3ππ* character in the T1 state. The zero‐field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm?1.  相似文献   

19.
Convectional, sedimentation, and drying dissipative structural patterns formed in the course of drying ethanol suspensions of colloidal silica spheres (110 nm in diameter) were studied in a glass dish and a watch glass. Vigorous cell convectional flow was observed with the naked eye, and the patterns changed dynamically with time. Broad-ring-like sedimentation patterns were observed in the suspension state just before the suspension was dried up, and the principal macroscopic patterns of the drying patterns were also broad-ring, though the colorful and fine microscopic structures were observed from optical microscopy.  相似文献   

20.
Abstract— Ab initio quantum mechanical calculations on ethyl bacteriochlorophyllide-a (Et-BChl-a) and ethyl bacteriopheophorbide-a (Et-BPheo-a) are presented, including self-consistent-field (SCF) molecular orbital studies on the ground states using the molecular fragment procedure, and configuration interaction (CI) calculations on the low-lying singlet and triplet states and absorption spectra. A characterization and comparison of many of the higher-lying molecular orbitals obtained from the SCF studies is presented. The estimated first ionization potentials are 5.66 and 5.97 eV for Et-BChl-a and Et-BPheo-a, respectively. Excited state calculations show that the visible spectrum of both molecules consists of an intense, y-polarized S1← S0 transition and a weakly-allowed, x-polarized S2← S0 transition. Both S1 and S2 states are 1(π, π*) in character, and are described by a four-orbital model. Transitions to the remaining calculated states, S3-S12, appear in the Soret region of the spectrum of both molecules. However, only transitions to S9(‘x’), S10(‘x’) and S11(‘y’) of Et-BChl-a, and S7(‘x’) and S10(‘y’) of Et-BPheo-a are of high intensity. The composition of the high intensity Soret states is 1(π, π*) and strongly “four-orbital” in nature. The lowest triplet state, T1, is predicted to lie 9752 cm-1 and 7880 cm-1 above S0 for Et-BPheo-a and Et-BChl-a, respectively. In each molecule T2 and S1 are nearly degenerate, suggesting a favorable pathway for intersystem crossing. Calculated Tn← T1 transitions indicate that the y-polarized T12← T1 transition in Et-BChl-a corresponds to the observed intense 24,400 cm-1 absorption in the triplet-triplet spectrum of BChl-a. A similar type spectrum is also predicted for BPheo-a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号