首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The angular and velocity distributions of desorbing products were analyzed in the course of a catalyzed N2O + CO reaction on Pd(110). The reaction proceeded steadily above 450 K, and the N2 desorption merely collimated sharply along 45 degrees off the surface normal toward the [001] direction. It is proposed that this peculiar N2 desorption is induced by the decomposition of adsorbed N2O oriented along the [001] direction. On the basis of the observation of similar inclined N2 desorption in both NO + CO and N2O + CO reactions, the N2 formation via the intermediate N2Oa dissociation was confirmed in catalytic NO reduction.  相似文献   

2.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

3.
We have investigated the effect of co-absorbed CO and reaction temperature on the angular distribution of N(2) desorption by N(2)O decomposition under the steady state of N(2)O-CO reaction on Rh(110). Spatial distributions of desorbing product N(2) emission have been measured at various surface temperatures and CO coverages. The decomposed N(2) collimates at 48°-61° off normal in the parallel plane to [001] and [110] directions, indicating that adsorbed N(2)O just before the decomposition is oriented along the [001] direction. Although the inclined and collimated N(2) desorption is always observed at any steady-state CO coverage and reaction temperature, the shape of the collimated N(2) distribution varied dependent on the co-adsorbed CO coverage. The distribution becomes sharp and shifts toward the surface normal direction with increasing CO coverage. These effects of adsorbed CO on the angular distribution of N(2) are interpreted by the collision of desorbed N(2) with co-adsorbed CO.  相似文献   

4.
Inclined N2 desorption was examined in the course of a catalyzed N2O + D2 (or CO) reaction on Pd(110) by angle-resolved mass spectroscopy combined with cross-correlation time-of-flight techniques. N2 desorption collimated at around 45 degrees off the normal toward the [001] direction in the temperature range of 400-800 K. Its collimation angle and kinetic energy were insensitive to both the surface temperature and surface conditions throughout the kinetic transition. It is proposed that this peculiar N2 desorption is induced by the decomposition of N2O oriented along the [001] direction.  相似文献   

5.
The angular distribution of desorbing product N2 was studied in N2O decompositions on Rh(110) in the temperature range of 60-700 K. The N2 desorption collimates along 62 degrees -68 degrees off normal toward either the [001] or [001] direction in a transient N2O decomposition below ca. 470 K or in the steady-state N2O+CO reaction above 540 K. In the steady-state reaction at the temperature from ca. 470 to 540 K, however, the collimation angle shifts from 62 degrees to 45 degrees with decreasing surface temperature. This angle shift is ascribed to the steric hindrance by coadsorbed CO because the N2 collimation in transient N2O decomposition at around 65 degrees is recovered in the range of 380-500 K by an abrupt CO pressure drop followed by the decrease in CO coverage. N2O is oriented along the [001] direction before dissociation. A scattering model of the nascent N2 by adsorbed CO is proposed, yielding smaller collimation angles.  相似文献   

6.
The angular and velocity distributions of desorbing product N(2) were examined over the crystal azimuth in steady-state NO+CO and N(2)O+CO reactions on Pd(110) by cross-correlation time-of-flight techniques. At surface temperatures below 600 K, N(2) desorption in both reactions splits into two directional lobes collimated along 41 degrees -45 degrees from the surface normal toward the [001] and [001] directions. Above 600 K, the normally directed N(2) desorption is enhanced in the NO reduction. Each product desorption component, as well as CO(2), shows a fairly asymmetric distribution about its collimation axis. Two factors, i.e., the anisotropic site structures and the reactant orientation and movements, are operative to induce such asymmetry, depending on the product emission mechanism.  相似文献   

7.
The angular and velocity distributions of desorbing products N2 and CO2 were studied in a steady-state NO + CO reaction on Pt(100). From the observation of the inclined N2 desorption, a contribution of the intermediate N2O decomposition pathway was first proposed on this surface. On the other hand, CO2 desorption collimated along the surface normal.  相似文献   

8.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

9.
Transient response and temperature-programmed desorption/reaction (TPD/TPR) methods were used to study the formation of adsorbed NO(x) from N2O and its effect during N2O decomposition to O2 and N2 over FeZSM-5 catalysts at temperatures below 653 K. The reaction proceeds via the atomic oxygen (O)(Fe) loading from N2O on extraframework active Fe(II) sites followed by its recombination/desorption as the rate-limiting step. The slow formation of surface NO(x,ads) species was observed from N2O catalyzing the N2O decomposition. This autocatalytic effect was assigned to the formation of NO(2,ads) species from NO(ads) and (O)(Fe) leading to facilitation of (O)(Fe) recombination/desorption. Mononitrosyl Fe2+(NO) and nitro (NO(2,ads)) species were found by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) in situ at 603 K when N2O was introduced into NO-containing flow passing through the catalyst. The presence of NO(x,ads) does not inhibit the surface oxygen loading from N2O at 523 K as observed by transient response. However, the reactivity of (O)(Fe) toward CO oxidation at low temperatures (<523 K) is drastically diminished. Surface NO(x) species probably block the sites necessary for CO activation, which are in the vicinity of the loaded atomic oxygen.  相似文献   

10.
The spatial distribution of desorbing O(2) and CO(2) was examined in 193-nm photoinduced reactions in O(2)+CO adlayers on stepped Pt (112)=[(s)3(111)x(001)]. The O(2) desorption collimated in inclined ways in the plane along the surface trough, confirming the hot-atom collision mechanism. In the presence of CO(a), the product CO(2) desorption also collimated in an inclined way, whereas the inclined O(2) desorption was suppressed. The inclined O(2) and CO(2) desorption is explained by a common collision-induced desorption model. At high O(2) coverage, the CO(2) desorption collimated closely along the (111) terrace normal.  相似文献   

11.
The vibrational temperatures of product CO(2) were measured in CO oxidation on Pd(111) as a function of the desorption angle by means of infrared chemiluminescence. The antisymmetric vibration temperature was separately determined from the other vibrational modes from the normalized chemiluminescence intensity. The product CO(2) desorption is sharply collimated along the surface normal. The antisymmetric vibrational temperature increased from 1300 to 1600 K as the desorption angle increased from 0 degrees to 30 degrees , whereas the averaged vibrational temperature over bending and symmetric modes decreased from 2450 to 1530 K. From these angle dependences, an energy partitioning model in repulsive desorption is proposed.  相似文献   

12.
Recent angle-resolved measurements of desorbing products were reviewed for decomposition of nitrogen oxides on noble metals. Two pathways for the removal of adsorbed nitrogen atoms, i.e., N(a) + NO(a) N2O(a) N2(g) + O(a) and 2N(a) N2(g), were examined typically on Pd(110). The former takes place in the presence of gaseous CO and shows two-directional N2 desorption collimated far from the surface normal in the normally directed plane along the [001] direction. The latter does not contribute in CO + NO reaction on Pd(110). The model proposed for the inclined desorption was also explained.  相似文献   

13.
The kinetics of N2O decomposition on Rh(111) single-crystal surfaces were investigated both experimentally by isothermal molecular beam measurements and theoretically using a Monte Carlo algorithm. The present work was directed to the understanding of two unusual observations derived from our previous work on this system, namely, (1) the lower rates for N2O decomposition seen at higher reaction temperatures, and (2) the lower total nitrogen yields and final oxygen surface coverages that accompany that behavior. Experimentally, it was determined here that after the rhodium surface is rendered inactive by N2O decomposition at high (520 K) temperatures, significant activity is still possible at lower (350 K) temperatures. The Monte Carlo simulations explain these observations by assuming that the surface sites required for the activation of adsorbed N2O increase in size with increasing reaction temperature.  相似文献   

14.
Surface-nitrogen removal steps were analyzed in the course of a catalyzed NO + H(2) reaction on Pd(110) by angle-resolved mass spectroscopy combined with cross-correlation time-of-flight techniques. Four removal steps, i.e., (i) the associative process of nitrogen atoms, 2N(a) --> N(2)(g), (ii) the decomposition of the intermediate, NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a), (iii) its desorption, N(2)O(a) --> N(2)O(g), and (iv) the desorption as ammonia, N(a) + 3H(a) --> NH(3)(g), are operative in a comparable order. Above 600 K, process (i) is predominant, whereas the others largely contribute below 600 K. Process (iv) becomes significant at H(2) pressures above a critical value, about half the NO pressure. Hydrogen was a stronger reagent than CO toward NO reduction and relatively enhanced the N(a) associative process.  相似文献   

15.
Towards a better understanding of the interface chemistry of ionic liquid (IL) thin film catalytic systems we have applied a rigorous surface science model approach. For the first time, a model homogeneous catalyst has been prepared under ultrahigh vacuum conditions. The catalyst, di-μ-chlorobis(chlorotricarbonylruthenium) [Ru(CO)(3)Cl(2)](2), and the solvent, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf(2)N], have been deposited by physical vapor deposition onto an alumina model support [Al(2)O(3)/NiAl(110)]. First, the interaction between thin films of [Ru(CO)(3)Cl(2)](2) and the support is investigated. Then, the ruthenium complex is co-deposited with the IL and the influence of the solvent on the catalyst is discussed. D(2)O, which is a model reactant, is further added. Growth, surface interactions, and mutual interactions in the thin films are studied with IRAS in combination with density functional (DFT) calculations. At 105 K, molecular adsorption of [Ru(CO)(3)Cl(2)](2) is observed on Al(2)O(3)/NiAl(110). The IRAS spectra of the binary [Ru(CO)(3)Cl(2)](2) + [BMIM][Tf(2)N] and ternary [Ru(CO)(3)Cl(2)](2) + [BMIM][Tf(2)N] + D(2)O show every characteristic band of the individual components. Above 223 K, partial decomposition of the ruthenium complex leads to species of molecular nature attributed to Ru(CO) and Ru(CO)(2) surface species. Formation of metallic ruthenium clusters occurs above 300 K and the model catalyst decomposes further at higher temperatures. Neither the presence of the IL nor of D(2)O prevents this partial decomposition of [Ru(CO)(3)Cl(2)](2) on alumina.  相似文献   

16.
用共沉淀法制备了一组不同组成的MnxCo3-xO4尖晶石型复合氧化物,表面负载碱金属助剂制备改性催化剂,用于催化分解N2O.用X射线衍射(XRD)、N2物理吸附(BET)、红外光谱(FTIR)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、X射线光电子能谱(XPS)等技术表征催化剂结构.考察了复合氧化物组成、碱金属助剂类型、钾前驱物等制备参数对催化剂结构和催化活性的影响.结果表明:添加助剂K、Cs降低了催化剂表面Co、Mn元素的电子结合能,弱化了Co—O和Mn—O键,有利于氧物种的脱除,提高了催化剂活性.优化出了活性较高的催化剂K/Mn0.4Co2.6O4(K2CO3),有氧无水、有氧有水气氛400℃连续反应50 h,N2O转化率分别保持100%和74.2%,催化剂稳定性较高.  相似文献   

17.
采用了不同沉淀剂(K2 CO3、Na2 CO3、NaOH、NaHCO3)制备了一系列 Co3 O4氧化物催化剂。通过 XRD、XPS、BET、H2-TPR、O2-TPD 表征手段,探究了催化剂物相结构和氧化还原性能对 N2 O 催化分解性能的影响。研究表明,以 K2 CO3为沉淀剂制备的 Co3 O4催化剂具有优越的氧化还原性能。此外,较低结晶度有助于提高催化剂的催化性能,催化剂表面物种与其沉淀剂相关:丰富的表面 Co 物种促进催化活性,较多氧空位有利于催化剂表面的电子传递和氧气的脱附。以 K2 CO3为沉淀剂制备的 Co3 O4催化剂表现出最佳的 N2 O 催化分解活性,在450℃达到90%以上的转化率。  相似文献   

18.
NO,程序升温表面反应(TPSR),NO-CH4反应,Co-MgO  相似文献   

19.
Adsorption and reaction of CO and CO2 were studied on oxygen-covered Au(997) surfaces by means of temperatureprogrammed desorption/reaction spectroscopy. Oxygen atoms (O(a)) on Au(997) enhances the CO2 adsorption and stabilizes the adsorbed CO2(a), and the stabilization effect also depends on the CO2(a) coverage and involved Au sites. CO2(a) desorption is the rate-limiting step for the CO+O(a) reaction to produce CO2 on Au(997) at 105 K and exhibits complex behaviors, including the desorption of CO2(a) upon CO exposures at 105 K and the desorption of O(a)-stabilized CO2(a) at elevated temperatures. The desorption of CO2(a) from the surface upon CO exposures at 105 K to produce gaseous CO2 depends on the surface reaction extent and involves the reaction heat-driven CO2(a) desorption channel. CO+O(a) reaction proceeds more easily with weakly-bound oxygen adatoms at the (111) terraces than strongly-bound oxygen adatoms at the (111) steps. These results reveal complex rate-limiting CO2(a) desorption behaviors during CO+O(a) reaction on Au surfaces at low temperatures which provide novel information on the fundamental understanding of Au catalysis.  相似文献   

20.
Interaction of N2O at low temperatures (473-603 K) with Fe-ZSM-5 zeolites (Fe, 0.01-2.1 wt %) activated by steaming and/or thermal treatment in He at 1323 K was studied by the transient response method and temperature-programmed desorption (TPD). Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) of NO adsorbed at room temperature as a probe molecule indicated heterogeneity of surface Fe(II) sites. The most intensive bands were found at 1878 and 1891 cm(-1), characteristic of two types mononitrosyl species assigned to Fe2+(NO) involved in bi- and oligonuclear species. Fast loading of atomic oxygen from N2O on the surface and slower formation of adsorbed NO species were observed. The initial rate of adsorbed NO formation was linearly dependent on the concentration of active Fe sites assigned to bi- and oligonuclear species, evolving oxygen in the TPD at around 630-670 K. The maximal coverage of a zeolite surface by NO was estimated from the TPD of NO at approximately 700 K. This allowed the simulation of the dynamics of the adsorbed NO formation at 523 K, which was consistent with the experiments. The adsorbed NO facilitated the atomic oxygen recombination/desorption, the rate determining step during N2O decomposition to O2 and N2, taking place at temperatures > or =563 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号