首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The angular and velocity distributions of desorbing products were analyzed in the course of a catalyzed N2O + CO reaction on Pd(110). The reaction proceeded steadily above 450 K, and the N2 desorption merely collimated sharply along 45 degrees off the surface normal toward the [001] direction. It is proposed that this peculiar N2 desorption is induced by the decomposition of adsorbed N2O oriented along the [001] direction. On the basis of the observation of similar inclined N2 desorption in both NO + CO and N2O + CO reactions, the N2 formation via the intermediate N2Oa dissociation was confirmed in catalytic NO reduction.  相似文献   

2.
Examinations of CO2 formed during steady-state CO oxidation reactions were performed using infrared (IR) chemiluminescence. The CO2 was formed using a molecular-beam method over Pd(110) and Pd(111). The CO2 formation rate is temperature dependent under various partial pressure conditions. The temperature of the maximum formation rate is denoted as TSmax. Analyses of IR emission spectra at surface temperatures higher than TSmax showed that the average vibrational temperature (TVAV) is higher for Pd(111) than for Pd(110). The antisymmetric vibrational temperature (TVAS) is almost equal on both surfaces. These results suggest that the activated CO2 complex is more bent on Pd(111) and straighter on Pd(110). Furthermore, the difference in the TVAV value was small for surface temperatures less than TSmax. The TVAS value was much higher than TVAV on both surfaces. These phenomena were observed only when the surface temperature was lower than TSmax: they became more pronounced at lower temperatures, suggesting that the activated complex of CO2 formation is much straighter on both Pd surfaces than that observed at higher surface temperatures. Combined with kinetic results, the higher CO coverage at the lower surface temperatures is inferred to be related to the linear activated complex of CO2 formation.  相似文献   

3.
The angular distribution of desorbing product N2 was studied in N2O decompositions on Rh(110) in the temperature range of 60-700 K. The N2 desorption collimates along 62 degrees -68 degrees off normal toward either the [001] or [001] direction in a transient N2O decomposition below ca. 470 K or in the steady-state N2O+CO reaction above 540 K. In the steady-state reaction at the temperature from ca. 470 to 540 K, however, the collimation angle shifts from 62 degrees to 45 degrees with decreasing surface temperature. This angle shift is ascribed to the steric hindrance by coadsorbed CO because the N2 collimation in transient N2O decomposition at around 65 degrees is recovered in the range of 380-500 K by an abrupt CO pressure drop followed by the decrease in CO coverage. N2O is oriented along the [001] direction before dissociation. A scattering model of the nascent N2 by adsorbed CO is proposed, yielding smaller collimation angles.  相似文献   

4.
Infrared (IR) chemiluminescence studies of CO2 formed during steady-state CO + NO reaction over Pd(110) and Pd(111) surfaces were carried out. Kinetics of the CO + NO reaction were studied over Pd(110) using a molecular-beam reaction system in the pressure range of 10-2-10-1 Torr. The activity of the CO + NO reaction on Pd(110) was much higher than that of Pd(111), which was quite different from the result of other experiments under a higher pressure range. On the basis of the experimental data on the dependence of the reaction rate on CO and NO pressures and the reaction rate constants obtained by using a reaction model, the coverage of NO, CO, N, and O was calculated under various flux conditions. From the analysis of IR emission spectra in the CO + O2 reaction on Pd(110) and Pd(111), the antisymmetric vibrational temperature (TVAS) was seen to be higher than the bending vibrational temperature (TVB) on Pd(110). In contrast, TVB was higher than TVAS on Pd(111). These behaviors suggest that the activated complex for CO2 formation is more bent on Pd(111) than that on Pd(110), which is reflected by the surface structure. Both TVB and TVAS for the CO + O2 reaction on Pd(110) and Pd(111) increased gradually with increasing surface temperature (TS). On the other hand, in the case of the CO + NO reaction on Pd(110) and Pd(111), TVAS decreased and TVB increased significantly with increasing TS. TVB was lower than TVAS at lower TS, while TVB was higher than TVAS at higher TS. Comparison of the data obtained for the two reactions indicates that TVB in the CO + NO reaction on Pd(110) at TS = 800 and 850 K is much higher than that in the CO + O2 reaction on Pd(110).  相似文献   

5.
Surface-nitrogen removal steps were analyzed in the course of a catalyzed NO + H(2) reaction on Pd(110) by angle-resolved mass spectroscopy combined with cross-correlation time-of-flight techniques. Four removal steps, i.e., (i) the associative process of nitrogen atoms, 2N(a) --> N(2)(g), (ii) the decomposition of the intermediate, NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a), (iii) its desorption, N(2)O(a) --> N(2)O(g), and (iv) the desorption as ammonia, N(a) + 3H(a) --> NH(3)(g), are operative in a comparable order. Above 600 K, process (i) is predominant, whereas the others largely contribute below 600 K. Process (iv) becomes significant at H(2) pressures above a critical value, about half the NO pressure. Hydrogen was a stronger reagent than CO toward NO reduction and relatively enhanced the N(a) associative process.  相似文献   

6.
We have investigated the effect of co-absorbed CO and reaction temperature on the angular distribution of N(2) desorption by N(2)O decomposition under the steady state of N(2)O-CO reaction on Rh(110). Spatial distributions of desorbing product N(2) emission have been measured at various surface temperatures and CO coverages. The decomposed N(2) collimates at 48°-61° off normal in the parallel plane to [001] and [110] directions, indicating that adsorbed N(2)O just before the decomposition is oriented along the [001] direction. Although the inclined and collimated N(2) desorption is always observed at any steady-state CO coverage and reaction temperature, the shape of the collimated N(2) distribution varied dependent on the co-adsorbed CO coverage. The distribution becomes sharp and shifts toward the surface normal direction with increasing CO coverage. These effects of adsorbed CO on the angular distribution of N(2) are interpreted by the collision of desorbed N(2) with co-adsorbed CO.  相似文献   

7.
Inclined N2 desorption was examined in the course of a catalyzed N2O + D2 (or CO) reaction on Pd(110) by angle-resolved mass spectroscopy combined with cross-correlation time-of-flight techniques. N2 desorption collimated at around 45 degrees off the normal toward the [001] direction in the temperature range of 400-800 K. Its collimation angle and kinetic energy were insensitive to both the surface temperature and surface conditions throughout the kinetic transition. It is proposed that this peculiar N2 desorption is induced by the decomposition of N2O oriented along the [001] direction.  相似文献   

8.
The angular and velocity distributions of desorbing product N(2) were examined over the crystal azimuth in steady-state NO+CO and N(2)O+CO reactions on Pd(110) by cross-correlation time-of-flight techniques. At surface temperatures below 600 K, N(2) desorption in both reactions splits into two directional lobes collimated along 41 degrees -45 degrees from the surface normal toward the [001] and [001] directions. Above 600 K, the normally directed N(2) desorption is enhanced in the NO reduction. Each product desorption component, as well as CO(2), shows a fairly asymmetric distribution about its collimation axis. Two factors, i.e., the anisotropic site structures and the reactant orientation and movements, are operative to induce such asymmetry, depending on the product emission mechanism.  相似文献   

9.
The angular and velocity distributions of desorbing products N2 and CO2 were studied in a steady-state NO + CO reaction on Pt(100). From the observation of the inclined N2 desorption, a contribution of the intermediate N2O decomposition pathway was first proposed on this surface. On the other hand, CO2 desorption collimated along the surface normal.  相似文献   

10.
Physisorption of N(2), O(2), and CO was studied on fully oxidized TiO(2)(110) using beam reflection and temperature-programmed desorption (TPD) techniques. Sticking coefficients for all three molecules are nearly equal (0.75 +/- 0.05) and approximately independent of coverage suggesting that adsorption occurs via a precursor-mediated mechanism. Excluding multilayer coverages, the TPD spectra for all three adsorbates exhibit three distinct coverage regimes that can be interpreted in accord with previous theoretical studies of N(2) adsorption. At low coverages (0-0.5 N(2)/Ti(4+)), N(2) molecules bind head-on to five-coordinated Ti(4+) ions. The adsorption occurs preferentially on the Ti(4+) sites that do not have neighboring adsorbates. This arrangement minimizes the repulsive interactions between the adsorbed molecules along the Ti(4+) rows resulting in a relatively small shift of the TPD peak (105 --> 90 K) with increasing coverage. At higher N(2) coverages (0.5-1.0 N(2)/Ti(4+)) the nearest-neighbor Ti(4+) sites become occupied. The close proximity of the adsorbates results in strong repulsion thus giving rise to a significant shift of the TPD leading edges (90 --> 45 K) with increasing coverage. For N(2)/Ti(4+) > 1, an additional low-temperature peak (approximately 43 K) is present and is ascribed to N(2) adsorption on bridge-bonded oxygen rows. The results for O(2) and CO are qualitatively similar. The repulsive adsorbate-adsorbate interactions are largest for CO, most likely due to alignment of CO dipole moments. The coverage-dependent binding energies of O(2), N(2), and CO are determined by inverting TPD profiles.  相似文献   

11.
The structure and chemical composition of Pd nanoparticles exposed to pure CO and mixtures of CO and O(2) at elevated temperatures have been studied in situ by a combination of X-ray Diffraction and X-ray Photoelectron Spectroscopy in pressures ranging from ultra high vacuum to 10 mbar and from room temperature to a few hundred degrees celsius. Our investigation shows that under CO exposure, above a certain temperature, carbon dissolves into the Pd particles forming a carbide phase. Upon exposure to CO and O(2) mixtures, the carbide phase forms and disappears reversibly, switching at the stoichiometric ratio for CO oxidation. This finding opens new scenarios for the understanding of catalytic oxidation of C-based molecules.  相似文献   

12.
A new type of traveling interface modulation has been observed in the NH(3) + O(2) reaction on a Rh(110) surface. A model is set up which reproduces the effect, which is attributed to diffusional mixing of two spatially separated adsorbates causing an excitability which is strictly localized to the vicinity of the interface of the adsorbate domains.  相似文献   

13.
采用B3LYP/cc-pVTZ理论水平系统研究了Ca+离子催化N2O+CO→N2+CO2反应的微观机理.反应分两步进行:第一步Ca+夺取N2O中的O原子有两条反应通道,其中优势通道为Ca+金属离子与N2O分子中O作用,形成线性分子复合物,活化N2O分子中的N-O键,之后的反应路径为O-N键断裂机理;第二步为CaO+金属...  相似文献   

14.
《Chemical physics letters》1986,125(2):123-128
A crossed beam study of CO+ production from the C+ + O2 reaction at a collision energy of 0.57 eV is presented. Very clear collision complex dynamics are observed which are shown to be consistent with the decay of a transient complex having a lifetime of approximately 0.5 ps. An analysis of the reactive scattering using an adiabatic state correlation diagram indicates that the formation of X-state CO2+ by insertion of C+ into the O2 bond is accessible from the reagents and correlates adiabatically with ground-state products. The average kinetic energy release is approximately 23% of the available energy. A comparison of the present data with the chemiluminescent studies of A-state production of CO+ indicates that the dominant channels at low energies are production of ground-state CO+ through the X2Πg and a4Πu state of CO2+.  相似文献   

15.
We have studied the potentially ionospherically significant reaction between N(2)2+ with O2 using position-sensitive coincidence spectroscopy. We observe both nondissociative and dissociative electron transfer reactions as well as two channels involving the formation of NO+. The NO+ product is formed together with either N+ and O in one bond-forming channel or O+ and N in the other bond-forming channel. Using the scattering diagrams derived from the coincidence data, it seems clear that both bond-forming reactions proceed via a collision complex [N2O2]2+. This collision complex then decays by loss of a neutral atom to form a daughter dication (NO2(2+) or N2O2+), which then decays by charge separation to yield the observed products.  相似文献   

16.
The rate constants for the reaction of CN with N2O and CO2 have been measured by the laser dissociation/laser-induced fluorescence (two-laser pump-probe) technique at temperatures between 300 and 740 K. The rate of CN + N2O was measurable above 500 K, with a least-squares averaged rate constant, k = 10−11.8±0.4 exp(−3560 ± 181/T) cm3/s. The rate of CN + CO2, however, was not measurable even at the highest temperature reached in the present work, 743 K, with [CO2] ⩽ 1.9 × 1018 molecules/cm3. In order to rationalize the observed kinetics, quantum mechanical calculations based on the BAC-MP4 method were performed. The results of these calculations reveal that the CN + N2O reaction takes place via a stable adduct NCNNO with a small barrier of 1.1 kcal/mol. The adduct, which is more stable than the reactants by 13 kcal/mol, decomposes into the NCN + NO products with an activation energy of 20.0 kcal/mol. This latter process is thus the rate-controlling step in the CN + N2O reaction. The CN + CO2 reaction, on the other hand, occurs with a large barrier of 27.4 kcal/mol, producing an unstable adduct NCOCO which fragments into NCO + CO with a small barrier of 4.5 kcal/mol. The large overall activation energy for this process explains the negligibly low reactivity of the CN radical toward CO2 below 1000 K. Least-squares analyses of the computed rate constants for these two CN reactions, which fit well with experimental data, give rise to for the temperature range 300–3000 K.  相似文献   

17.
The rotational and vibrational energies of product CO(2) in the CO oxidation on Pd(110) surfaces were measured as functions of desorption angles. The antisymmetric vibrational temperature (T(a)) was separately determined from the other vibrational modes from the normalized chemiluminescence intensity. The rotational temperature (T(rot)) and vibrational temperature averaged over the symmetric and bending modes (T(sb)) were then determined by the position and width of spectra by comparison with simulated spectra. On Pd(110)-(1x1), with increases in the desorption angle, T(a), T(sb) and T(rot) decreased in the [001] direction but remained constant in [11[combining macron]0]. However, such anisotropy disappeared when the ratio of exposure of O(2) to that of CO decreased, resulting in a gradual decrease of the three temperatures with increases in the desorption angle. On Pd(110) with missing rows, the three temperatures increased in [001] but decreased in [11[combining macron]0], indicating that the transition state changes with the geometry of the substrate. On Pd(110) with missing rows, T(a) was significantly lower than T(sb), although T(a) was close to or higher than T(sb) on Pd(110)-(1x1). However, there was no significant difference in the angular dependence between T(a), T(sb) and T(rot).  相似文献   

18.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

19.
Benzoquinone (BQ) and O(2) are among the most common stoichiometric oxidants in Pd-catalyzed oxidation reactions. The present study provides rare insights into mechanistic differences between BQ and O(2) in their reactivity with a well-defined Pd-hydride complex, Pd(IMes)(2)(H)(O(2)CPh) (1). BQ promotes the reductive elimination of PhCO(2)H from 1 and catalyzes the formation of a Pd(II)-OOH complex when this reaction is carried out under aerobic conditions. These results have important implications for Pd-catalyzed oxidation reactions.  相似文献   

20.
We study the adsorption dynamics of N(2) on the Fe(110) surface. Classical molecular dynamics calculations are performed on top of a six-dimensional potential energy surface calculated within density functional theory. Our results show that N(2) dissociation on this surface is a highly activated process that takes place along a very narrow reaction path with an energy barrier of around 1.1 eV, which explains the measured low reactivity of this system. By incorporating energy exchange with the lattice in the dynamics, we also study the non-dissociative molecular adsorption process. From the analysis of the potential energy surface, we observe the presence of two distinct N(2) adsorption wells. Our dynamics calculations show that the relative population of these adsorption sites varies with the incident energy of the molecule and the surface temperature. We find an activation energy of around 150 meV that prevents molecular adsorption under thermal and hypothermal N(2) gas exposure of the surface. This finding is also consistent with the available experimental information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号