首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Graph Theory》2018,87(4):430-442
For , a smallest graph whose automorphism group is isomorphic to the generalized quaternion group is constructed. If , then such a graph has vertices and edges. In the special case when , a smallest graph has 16 vertices but 44 edges.  相似文献   

2.
《Journal of Graph Theory》2018,87(2):135-148
Let ( be two positive integers. We generalize the well‐studied notions of ‐colorings and of the circular chromatic number to signed graphs. This implies a new notion of colorings of signed graphs, and the corresponding chromatic number χ. Some basic facts on circular colorings of signed graphs and on the circular chromatic number are proved, and differences to the results on unsigned graphs are analyzed. In particular, we show that the difference between the circular chromatic number and the chromatic number of a signed graph is at most 1. Indeed, there are signed graphs where the difference is 1. On the other hand, for a signed graph on n vertices, if the difference is smaller than 1, then there exists , such that the difference is at most . We also show that the notion of ‐colorings is equivalent to r‐colorings (see [12] (X. Zhu, Recent developments in circular coloring of graphs, in Topics in Discrete Mathematics Algorithms and Combinatorics Volume 26 , Springer Berlin Heidelberg, 2006, pp. 497–550)).  相似文献   

3.
《Journal of Graph Theory》2018,88(1):174-191
We consider (not necessarily proper) colorings of the vertices of a graph where every color is thoroughly dispersed, that is, appears in every open neighborhood. Equivalently, every color is a total dominating set. We define as the maximum number of colors in such a coloring and as the fractional version thereof. In particular, we show that every claw‐free graph with minimum degree at least  two has  and this is best possible. For planar graphs, we show that every triangular disc has and this is best possible, and that every planar graph has and this is best possible, while we conjecture that every planar triangulation has . Further, although there are arbitrarily large examples of connected, cubic graphs with , we show that for a connected cubic graph . We also consider the related concepts in hypergraphs.  相似文献   

4.
Galluccio, Goddyn, and Hell proved in 2001 that in any minor‐closed class of graphs, graphs with large enough girth have a homomorphism to any given odd cycle. In this paper, we study the computational aspects of this problem. Let be a monotone class of graphs containing all planar graphs, and closed under clique‐sum of order at most two. Examples of such class include minor‐closed classes containing all planar graphs, and such that all minimal obstructions are 3‐connected. We prove that for any k and g, either every graph of girth at least g in has a homomorphism to , or deciding whether a graph of girth g in has a homomorphism to is NP‐complete. We also show that the same dichotomy occurs when considering 3‐Colorability or acyclic 3‐Colorability of graphs under various notions of density that are related to a question of Havel (On a conjecture of Grünbaum, J Combin Theory Ser B 7 (1969), 184–186) and a conjecture of Steinberg (The state of the three color problem, Quo Vadis, Graph theory?, Ann Discrete Math 55 (1993), 211–248) about the 3‐Colorability of sparse planar graphs.  相似文献   

5.
《Journal of Graph Theory》2018,88(2):294-301
Suppose is a loopless graph and is the graph obtained from G by subdividing each of its edges k () times. Let be the set of all spanning trees of G, be the line graph of the graph and be the number of spanning trees of . By using techniques from electrical networks, we first obtain the following simple formula: Then we find it is in fact equivalent to a complicated formula obtained recently using combinatorial techniques in [F. M. Dong and W. G. Yan, Expression for the number of spanning trees of line graphs of arbitrary connected graphs, J. Graph Theory. 85 (2017) 74–93].  相似文献   

6.
We consider a variant of the Cops and Robber game, in which the robber has unbounded speed, that is, can take any path from her vertex in her turn, but she is not allowed to pass through a vertex occupied by a cop. Let denote the number of cops needed to capture the robber in a graph G in this variant, and let denote the treewidth of G. We show that if G is planar then , and there is a polynomial‐time constant‐factor approximation algorithm for computing . We also determine, up to constant factors, the value of of the Erd?s–Rényi random graph for all admissible values of p, and show that when the average degree is ω(1), is typically asymptotic to the domination number.  相似文献   

7.
In this article we prove a new result about partitioning colored complete graphs and use it to determine certain Ramsey numbers exactly. The partitioning theorem we prove is that for , in every edge coloring of with the colors red and blue, it is possible to cover all the vertices with k disjoint red paths and a disjoint blue balanced complete ‐partite graph. When the coloring of is connected in red, we prove a stronger result—that it is possible to cover all the vertices with k red paths and a blue balanced complete ‐partite graph. Using these results we determine the Ramsey number of an n‐vertex path, , versus a balanced complete t‐partite graph on vertices, , whenever . We show that in this case , generalizing a result of Erd?s who proved the case of this result. We also determine the Ramsey number of a path versus the power of a path . We show that , solving a conjecture of Allen, Brightwell, and Skokan.  相似文献   

8.
《Journal of Graph Theory》2018,88(3):428-433
The clique chromatic number of a graph is the minimum number of colors in a vertex coloring so that no maximal (with respect to containment) clique is monochromatic. We prove that the clique chromatic number of the binomial random graph is, with high probability, . This settles a problem of McDiarmid, Mitsche, and Prałat who proved that it is with high probability.  相似文献   

9.
《Journal of Graph Theory》2018,87(4):581-586
Jones, Nedela, and Škoviera (2008) showed that a complete bipartite graph has a unique orientably regular embedding if and only if . In this article, we extend this result by proving that a complete bipartite graph has a unique orientably edge‐transitive embedding if and only if .  相似文献   

10.
《Journal of Graph Theory》2018,87(4):587-652
Take a graph G, an edge subset , and a set of terminals where is even. The triple is called a signed graft. A T‐join is odd if it contains an odd number of edges from Σ. Let ν be the maximum number of edge‐disjoint odd T‐joins. A signature is a set of the form where and is even. Let τ be the minimum cardinality a T‐cut or a signature can achieve. Then and we say that packs if equality holds here. We prove that packs if the signed graft is Eulerian and it excludes two special nonpacking minors. Our result confirms the Cycling Conjecture for the class of clutters of odd T‐joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two‐commodity paths, packing T‐joins with at most four terminals, and a new result on covering edges with cuts.  相似文献   

11.
A graph is a k‐critical graph if G is not ‐colorable but every proper subgraph of G is ‐colorable. In this article, we construct a family of 4‐critical planar graphs with n vertices and edges. As a consequence, this improves the bound for the maximum edge density attained by Abbott and Zhou. We conjecture that this is the largest edge density for a 4‐critical planar graph.  相似文献   

12.
The Erd?s–Lovász Tihany conjecture asserts that every graph G with ) contains two vertex disjoint subgraphs G 1 and G 2 such that and . Under the same assumption on G , we show that there are two vertex disjoint subgraphs G 1 and G 2 of G such that (a) and or (b) and . Here, is the chromatic number of is the clique number of G , and col(G ) is the coloring number of G .  相似文献   

13.
《Journal of Graph Theory》2018,89(3):327-340
In this article, we are concerned with sufficient conditions for the existence of a ‐factor. We prove that for , there exists such that if a graph G satisfies for all , then G has a ‐factor, where is the number of components C of with . On the other hand, we construct infinitely many graphs G having no ‐factor such that for all .  相似文献   

14.
We present a tight extremal threshold for the existence of Hamilton cycles in graphs with large minimum degree and without a large “bipartite hole” (two disjoint sets of vertices with no edges between them). This result extends Dirac's classical theorem, and is related to a theorem of Chvátal and Erd?s. In detail, an ‐bipartite‐hole in a graph G consists of two disjoint sets of vertices S and T with and such that there are no edges between S and T ; and is the maximum integer r such that G contains an ‐bipartite‐hole for every pair of nonnegative integers s and t with . Our central theorem is that a graph G with at least three vertices is Hamiltonian if its minimum degree is at least . From the proof we obtain a polynomial time algorithm that either finds a Hamilton cycle or a large bipartite hole. The theorem also yields a condition for the existence of k edge‐disjoint Hamilton cycles. We see that for dense random graphs , the probability of failing to contain many edge‐disjoint Hamilton cycles is . Finally, we discuss the complexity of calculating and approximating .  相似文献   

15.
《Journal of Graph Theory》2018,87(2):176-187
For graphs G and H, let  denote the property that for every proper edge‐coloring of G (with an arbitrary number of colors) there is a rainbow copy of H in G, that is, a copy of H with no two edges of the same color. The authors (2014) proved that, for every graph H, the threshold function  of this property for the binomial random graph  is asymptotically at most , where denotes the so‐called maximum 2‐density of H. Nenadov et al. (2014) proved that if H is a cycle with at least  seven vertices or a complete graph with at least 19 vertices, then . We show that there exists a fairly rich, infinite family of graphs F containing a triangle such that if for suitable constants and , where , then almost surely. In particular, for any such graph F.  相似文献   

16.
Let be an integer, be the set of vertices of degree at least 2k in a graph G , and be the set of vertices of degree at most in G . In 1963, Dirac and Erd?s proved that G contains k (vertex) disjoint cycles whenever . The main result of this article is that for , every graph G with containing at most t disjoint triangles and with contains k disjoint cycles. This yields that if and , then G contains k disjoint cycles. This generalizes the Corrádi–Hajnal Theorem, which states that every graph G with and contains k disjoint cycles.  相似文献   

17.
《Journal of Graph Theory》2018,87(4):516-525
Let p be a prime greater than 5. We show that, while the generalized Petersen graphs of the form have cellular toroidal embeddings, they have no such embeddings having the additional property that a free action of a group on the graph extends to a cellular automorphism of the torus. Such an embedding is called a derived embedding. We also show that does have a derived embedding in the torus, and we show that for any odd q, each generalized Petersen graph of the form has a derived embedding in the Klein bottle, which has the same Euler characteristic as the torus. We close with some comments that frame these results in the light of Abrams and Slilaty's recent work on graphs featuring group actions that extend to spherical embeddings of those graphs.  相似文献   

18.
We study minimum degree conditions for which a graph with given odd girth has a simple structure. For example, the classical work of Andrásfai, Erd?s, and Sós implies that every n‐vertex graph with odd girth and minimum degree bigger than must be bipartite. We consider graphs with a weaker condition on the minimum degree. Generalizing results of Häggkvist and of Häggkvist and Jin for the cases and 3, we show that every n‐vertex graph with odd girth and minimum degree bigger than is homomorphic to the cycle of length . This is best possible in the sense that there are graphs with minimum degree and odd girth that are not homomorphic to the cycle of length . Similar results were obtained by Brandt and Ribe‐Baumann.  相似文献   

19.
《Journal of Graph Theory》2018,88(1):222-231
A well‐known theorem of Gomory and Hu states that if G is a finite graph with nonnegative weights on its edges, then there exists a tree T (now called a Gomory‐Hu tree) on such that for all there is an such that the two components of determine an optimal (minimal valued) cut between u an v in G. In this article, we extend their result to infinite weighted graphs with finite total weight. Furthermore, we show by an example that one cannot omit the condition of the finiteness of the total weight.  相似文献   

20.
《Journal of Graph Theory》2018,88(1):131-145
For a sequence d of nonnegative integers, let and be the sets of all graphs and forests with degree sequence d, respectively. Let , , , and where is the domination number and is the independence number of a graph G. Adapting results of Havel and Hakimi, Rao showed in 1979 that can be determined in polynomial time. We establish the existence of realizations with , and with and that have strong structural properties. This leads to an efficient algorithm to determine for every given degree sequence d with bounded entries as well as closed formulas for and .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号