首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Let D be a digraph with vertex set and arc set . A vertex x is a k‐king of D, if for every , there is an ‐path of length at most k. A subset N of is k‐independent if for every pair of vertices , we have and ; it is l‐absorbent if for every there exists such that . A ‐kernel of D is a k‐independent and l‐absorbent subset of . A k‐kernel is a ‐kernel. A digraph D is k‐quasitransitive, if for any path of length k, x0 and are adjacent. In this article, we will prove that a k‐quasitransitive digraph with has a k‐king if and only if it has a unique initial strong component and the unique initial strong component is not isomorphic to an extended ‐cycle where each has at least two vertices. Using this fact, we show that every strong k‐quasitransitive digraph has a ‐kernel.  相似文献   

2.
The crossing number cr(G) of a graph G is the minimum number of crossings in a drawing of G in the plane with no more than two edges intersecting at any point that is not a vertex. The rectilinear crossing number of G is the minimum number of crossings in a such drawing of G with edges as straight line segments. Zarankiewicz proved in 1952 that . We generalize the upper bound to and prove . We also show that for n large enough, and , with the tighter rectilinear lower bound established through the use of flag algebras. A complete multipartite graph is balanced if the partite sets all have the same cardinality. We study asymptotic behavior of the crossing number of the balanced complete r‐partite graph. Richter and Thomassen proved in 1997 that the limit as of over the maximum number of crossings in a drawing of exists and is at most . We define and show that for a fixed r and the balanced complete r‐partite graph, is an upper bound to the limit superior of the crossing number divided by the maximum number of crossings in a drawing.  相似文献   

3.
The k‐linkage problem is as follows: given a digraph and a collection of k terminal pairs such that all these vertices are distinct; decide whether D has a collection of vertex disjoint paths such that is from to for . A digraph is k‐linked if it has a k‐linkage for every choice of 2k distinct vertices and every choice of k pairs as above. The k‐linkage problem is NP‐complete already for [11] and there exists no function such that every ‐strong digraph has a k‐linkage for every choice of 2k distinct vertices of D [17]. Recently, Chudnovsky et al. [9] gave a polynomial algorithm for the k‐linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In this article, we use their result as well as the classical polynomial algorithm for the case of acyclic digraphs by Fortune et al. [11] to develop polynomial algorithms for the k‐linkage problem in locally semicomplete digraphs and several classes of decomposable digraphs, including quasi‐transitive digraphs and directed cographs. We also prove that the necessary condition of being ‐strong is also sufficient for round‐decomposable digraphs to be k‐linked, obtaining thus a best possible bound that improves a previous one of . Finally we settle a conjecture from [3] by proving that every 5‐strong locally semicomplete digraph is 2‐linked. This bound is also best possible (already for tournaments) [1].  相似文献   

4.
Let be a sequence of of nonnegative integers pairs. If a digraph D with satisfies and for each i with , then d is called a degree sequence of D. If D is a strict digraph, then d is called a strict digraphic sequence. Let be the collection of digraphs with degree sequence d . We characterize strict digraphic sequences d for which there exists a strict strong digraph .  相似文献   

5.
Let G be a bridgeless cubic graph. Consider a list of k 1‐factors of G. Let be the set of edges contained in precisely i members of the k 1‐factors. Let be the smallest over all lists of k 1‐factors of G. We study lists by three 1‐factors, and call with a ‐core of G. If G is not 3‐edge‐colorable, then . In Steffen (J Graph Theory 78 (2015), 195–206) it is shown that if , then is an upper bound for the girth of G. We show that bounds the oddness of G as well. We prove that . If , then every ‐core has a very specific structure. We call these cores Petersen cores. We show that for any given oddness there is a cyclically 4‐edge‐connected cubic graph G with . On the other hand, the difference between and can be arbitrarily big. This is true even if we additionally fix the oddness. Furthermore, for every integer , there exists a bridgeless cubic graph G such that .  相似文献   

6.
Let and be the largest order of a Cayley graph and a Cayley graph based on an abelian group, respectively, of degree d and diameter k. When , it is well known that with equality if and only if the graph is a Moore graph. In the abelian case, we have . The best currently lower bound on is for all sufficiently large d. In this article, we consider the construction of large graphs of diameter 2 using generalized difference sets. We show that for sufficiently large d and if , and m is odd.  相似文献   

7.
The Ramsey numbers of cycles imply that every 2‐edge‐colored complete graph on n vertices contains monochromatic cycles of all lengths between 4 and at least . We generalize this result to colors by showing that every k‐edge‐colored complete graph on vertices contains ‐edge‐colored cycles of all lengths between 3 and at least .  相似文献   

8.
Interval minors of bipartite graphs were recently introduced by Jacob Fox in the study of Stanley–Wilf limits. We investigate the maximum number of edges in ‐interval minor‐free bipartite graphs. We determine exact values when and describe the extremal graphs. For , lower and upper bounds are given and the structure of ‐interval minor‐free graphs is studied.  相似文献   

9.
Let G be a connected simple graph, and let f be a mapping from to the set of integers. This paper is concerned with the existence of a spanning tree in which each vertex v has degree at least . We show that if for any nonempty subset , then a connected graph G has a spanning tree such that for all , where is the set of neighbors v of vertices in S with , , and is the degree of x in T. This is an improvement of several results, and the condition is best possible.  相似文献   

10.
Given graphs H and F, a subgraph is an Fsaturated subgraph of H if , but for all . The saturation number of F in H, denoted , is the minimum number of edges in an F‐saturated subgraph of H. In this article, we study saturation numbers of tripartite graphs in tripartite graphs. For and n1, n2, and n3 sufficiently large, we determine and exactly and within an additive constant. We also include general constructions of ‐saturated subgraphs of with few edges for .  相似文献   

11.
Given a family and a host graph H, a graph is ‐saturated relative to H if no subgraph of G lies in but adding any edge from to G creates such a subgraph. In the ‐saturation game on H, players Max and Min alternately add edges of H to G, avoiding subgraphs in , until G becomes ‐saturated relative to H. They aim to maximize or minimize the length of the game, respectively; denotes the length under optimal play (when Max starts). Let denote the family of odd cycles and the family of n‐vertex trees, and write F for when . Our results include , for , for , and for . We also determine ; with , it is n when n is even, m when n is odd and m is even, and when is odd. Finally, we prove the lower bound . The results are very similar when Min plays first, except for the P4‐saturation game on .  相似文献   

12.
Let G be a 5‐connected triangulation of a surface Σ different from the sphere, and let be the Euler characteristic of Σ. Suppose that with even and M and N are two matchings in of sizes m and n respectively such that . It is shown that if the pairwise distance between any two elements of is at least five and the face‐width of the embedding of G in Σ is at least , then there is a perfect matching M0 in containing M such that .  相似文献   

13.
This article introduces a new variant of hypercubes . The n‐dimensional twisted hypercube is obtained from two copies of the ‐dimensional twisted hypercube by adding a perfect matching between the vertices of these two copies of . We prove that the n‐dimensional twisted hypercube has diameter . This improves on the previous known variants of hypercube of dimension n and is optimal up to an error of order . Another type of hypercube variant that has similar structure and properties as is also discussed in the last section.  相似文献   

14.
We study a family of digraphs (directed graphs) that generalises the class of Cayley digraphs. For nonempty subsets of a group G, we define the two‐sided group digraph to have vertex set G, and an arc from x to y if and only if for some and . In common with Cayley graphs and digraphs, two‐sided group digraphs may be useful to model networks as the same routing and communication scheme can be implemented at each vertex. We determine necessary and sufficient conditions on L and R under which may be viewed as a simple graph of valency , and we call such graphs two‐sided group graphs. We also give sufficient conditions for two‐sided group digraphs to be connected, vertex‐transitive, or Cayley graphs. Several open problems are posed. Many examples are given, including one on 12 vertices with connected components of sizes 4 and 8.  相似文献   

15.
We seek the maximum number of colors in an edge‐coloring of the complete graph not having t edge‐disjoint rainbow spanning subgraphs of specified types. Let , , and denote the answers when the spanning subgraphs are cycles, matchings, or trees, respectively. We prove for and for . We prove for and for . We also provide constructions for the more general problem in which colorings are restricted so that colors do not appear on more than q edges at a vertex.  相似文献   

16.
In an earlier article the authors constructed a hamilton cycle embedding of in a nonorientable surface for all and then used these embeddings to determine the genus of some large families of graphs. In this two‐part series, we extend those results to orientable surfaces for all . In part II, a voltage graph construction is presented for building embeddings of the complete tripartite graph on an orientable surface such that the boundary of every face is a hamilton cycle. This construction works for all such that p is prime, completing the proof started by part I (which covers the case ) that there exists an orientable hamilton cycle embedding of for all , . These embeddings are then used to determine the genus of several families of graphs, notably for and, in some cases, for .  相似文献   

17.
Let and . We show that, if G is a sufficiently large simple graph of average degree at least μ, and H is a random spanning subgraph of G formed by including each edge independently with probability , then H contains a cycle with probability at least .  相似文献   

18.
We construct a face two‐colourable, blue and green say, embedding of the complete graph in a nonorientable surface in which there are blue faces each of which have a hamilton cycle as their facial walk and green faces each of which have a triangle as their facial walk; equivalently a biembedding of a Steiner triple system of order n with a hamilton cycle decomposition of , for all and . Using a variant of this construction, we establish the minimum genus of nonorientable embeddings of the graph , for where and .  相似文献   

19.
Two Hamilton paths in are separated by a cycle of length k if their union contains such a cycle. For we bound the asymptotics of the maximum cardinality of a family of Hamilton paths in such that any pair of paths in the family is separated by a cycle of length k. We also deal with related problems, including directed Hamilton paths.  相似文献   

20.
We prove that the vertex degree threshold for tiling (the 3‐uniform hypergraph with four vertices and two triples) in a 3‐uniform hypergraph on vertices is , where if and otherwise. This result is best possible, and is one of the first results on vertex degree conditions for hypergraph tiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号